MULTIPLIERLESS TWO-CHANNEL PERFECT RECONSTRUCTION LATTICE FILTER BANK DESIGN USING SPECTRAL FACTOR SELECTION

Mingazin A.

RADIS Ltd, Russia, Moscow, Zelenograd, 124460, POB 20. Tel./fax (095) 535-35-13, e-mail: <u>alexmin@orc.ru</u>

A two-channel perfect reconstruction lattice filter bank proposed in [1] is considered. We have assumed that involvement of a spectral factor selection into multiplierless lattice filter bank design algorithms can improve results. It is confirmed by the design example at nominal edges $f_{1n}=0.18$, $f_{2n}=0.32$ and the sampling frequency equal 1. We used two algorithms based on a variation of initial parameters (VIP) as [4]. The results [2-4] may be improved by using a special spectral factor. That is shown in Table1. Here 2N-1 is the order of each filter in the bank; C is the spectral factor code; M is the fractional part wordlength of coefficients; m is the number of non-zero bits in coefficients; f_1 and r are the passband edge and auxiliary parameter [4] for which the solution is obtained; \tilde{a}_0 - the minimum stopband attenuation; Σ - the total number of adders including the structure adders (first item) and adders (second item) replacing all pairs of multipliers on coefficients α_i in Fig.1b in [2,3].

							Table 1
Algorithm	2N-1	С	Μ	m	$f_1; r$	$\widetilde{a}_0^{}$, dB	Σ
Simple rounding [2]	27		10	2	-	25.38	56=28+14×2
Tree search [2]		0			-	45.37*	56=28+14×2
Implicit enumeration [3]	21		9	≤3	-	45.19*	56=22+17×2
VIP [4]					0.18053; 3	45.01	56=22+17×2
		0	10		0.1950; 0.1683	38.85	$52 = 28 + 12 \times 2$
VIP		33	8		0.1788; 0.1367	46.79	$54 = 28 + 13 \times 2$
			7		0.1794; 0.1429	44.06	$50=28+11\times 2$
	27	0		_	0.1780; 0.4398	40.98	50=28+11×2
VIP + variation of			10	≤ 2	0.1788; 0.1367	48.10	56=28+14×2
coefficients (coordinate-		33			0.1800; 0.1481	47.81	$54 = 28 + 13 \times 2$
wise search)			7		0.1786; 0.1377	46.08	$50=28+11\times 2$
					0 1810 0 1600	44 38	$44 = 28 + 8 \times 2$

In case C=0 the passband zeros of the transfer function are $R_6 \exp(\pm j\varphi_6)$, $R_5 \exp(\pm j\varphi_5)$, ..., $R_1 \exp(\pm j\varphi_1)$, R_0 and in case C=33 the zeros are $R_6 \exp(\pm \varphi_6)$, $R_5^{-1} \exp(\pm \varphi_5)$, $R_4 \exp(\pm \varphi_4)$,..., $R_1 \exp(\pm \varphi_1)$, R_0^{-1} . Here R_i is the radius and φ_i is the angle of i-th zero in z-plane. In addition $R_i < 1$, i=0,1,...,6 and $\varphi_1 < \varphi_2 < ... < \varphi_6$. For the solution with $\tilde{a}_0 = 48.10$ dB the coefficients are α_0 ,..., α_{13} : $-2 + 2^{-3}$, $2^{-1} + 2^{-7}$, $2^{-1} + 2^{-5}$, $2^{-5} - 2^{-8}$, $2^{-1} + 2^{-6}$, $2^3 - 1$, $-2^{-1} - 2^{-7}$, $2^{-2} - 2^{-6}$, $1 - 2^{-7}$, $-2^{-6} + 2^{-8}$, $-2^{-3} + 2^{-5}$, $2^{-3} + 2^{-6}$, $-2^{-4} + 2^{-6}$, $2^{-6} - 2^{-10}$. For the solution with $\tilde{a}_0 = 46.08$ dB all coefficients are identical except $\alpha_3, \alpha_9, \alpha_{13}$: $2^{-5}, -2^{-6}, 2^{-6}$. It is interesting that the solution with $\tilde{a}_0 = 46.79$ dB differs from the one with $\tilde{a}_0 = 48.10$ dB by the only coefficients from [2,3].

References

 Vaidyanathan P.P., Hoang P.Q. Lattice structures for optimal and robust implementation of twochannel perfect-reconstruction QMF banks. IEEE Trans. on ASSP. 1988. V. 36. Jan. P. 81-94.
Lim Y.C., Yu Y. J. A width-recursive depth-first tree search approach for the design of discrete coeffi-

cient perfect reconstruction lattice filter bank. IEEE Trans. on CAS: II. 2003. Vol. 50. June. P. 257-266. 3. Yli-Kaakinen J., Saramaki T., Bregovic R. An algorithm for the design of multiplierless two-channel

perfect reconstruction orthogonal lattice filter banks. ISCCSP. 2004. Mar. P. 415-418.

4. Mingazin A. Design of multiplierless perfect reconstruction lattice filter banks. Sowremennaya elektronika. 2007. Mar. P. 50-55.