МИНИМАЛЬНО-ФАЗОВЫЕ БИХ-ФИЛЬТРЫ С МИНИМАЛЬНОЙ НЕРАВНОМЕРНОСТЬЮ ХГВЗ

Мингазин А.Т.

РАДИС Лтд, Россия, Москва, Зеленоград, 124460, а/я 20. Тел./факс. 499-735-35-13, e-mail: <u>alexmin@radis.ru</u>

Аннотация. Представлены два подхода к синтезу минимально-фазовых цифровых БИХфильтров с минимальной неравномерностью ХГВЗ в полосе пропускания и требуемой АЧХ. В первом из них оптимизируются исходные параметры АЧХ классических фильтров Золотарёва-Кауэра, Чебышева и Баттерворта, а во втором - коэффициенты каскадной передаточной функции фильтра с нулями передачи на единичной окружности. Численные результаты, показывают, что первый подход приводит к хорошим результатам, но неклассические минимально-фазовые БИХ-фильтры, полученные с помощью второго подхода, могут иметь значительно меньшие неравномерности ХГВЗ. Степень уменьшения зависит от требований к АЧХ.

Введение

Известно, что нули передаточной функции минимально-фазовых цифровых БИХфильтров находятся внутри единичной окружности комплексной z-плоскости. Классические БИХ-фильтры полученные на основе билинейного преобразования аналоговых фильтров-прототипов Золотарёва-Кауэра, Чебышева, Баттерворта и др. имеют нули на единичной окружности и, согласно [1] не являются строго минимально-фазовыми, но обладают рядом их свойств. Поэтому далее будем называть эти фильтры, как и в ряде других публикаций, минимально-фазовыми.

Известно также, что БИХ-фильтры часто оказываются непригодными из-за свойственной им большой неравномерности ХГВЗ в полосе пропускания. Из существующих методов уменьшения этой неравномерности выделим следующие:

- Коррекция неравномерности ХГВЗ фильтра с приемлемой АЧХ оптимизированной фазовой (всепропускающей) цепью.
- Минимизация неравномерности ХГВЗ полюсного БИХ-фильтра с последующей коррекцией его АЧХ оптимизированным КИХ-фильтром с линейной ФЧХ.
- Минимизация неравномерности ХГВЗ БИХ-фильтра при заданных допусках на отклонение АЧХ без ограничения на расположение нулей передачи.
- Минимизация неравномерности ХГВЗ классических БИХ-фильтров путем оптимального выбора исходных параметров АЧХ.
- Минимизация неравномерности ХГВЗ БИХ-фильтра с нулями передачи на единичной окружности при заданных допусках на отклонение АЧХ.

Широко распространенный первый из перечисленных метод может приводить к завышенному результирующему порядку фильтра. Второй [2] - позволяет получить экстремально малые неравномерности ХГВЗ в сравнении с первым методом (особенно для узкополосных фильтров). Третий [3] - дает экстремально малые неравномерности ХГВЗ в сравнении с первым и некоторыми другими конкурирующими методами. Четвертый [4] не всегда приводит к желаемым результатам. Пятый [5] - позволяет улучшить решения, получаемые четвертым методом. Все эти методы минимизации неравномерности ХГВЗ отличаются степенью сложности и за исключением четвертого и пятого метода, приводят к неминимально-фазовым БИХ-фильтрам, которым в отличие от минимально-фазовых БИХ-фильтров характерна переходная характеристика с длительным временем нарастания, что нежелательно в ряде приложений, например, в измерительной технике и некоторых системах телекоммуникации и связи [6].

В данной статье внимание сосредоточим на проблемах минимизации неравномерности ХГВЗ в полосе пропускания минимально-фазовых БИХ-фильтров нижних частот. Рассмотрим оба выше упомянутых метода, вначале - основанный на оптимальном выборе исходных параметров АЧХ четырех классических БИХ-фильтров (Баттерворта, Чебышева I, II и Золотарёва-Кауэра), а затем метод, основанный на оптимизации коэффициентов каскадных БИХ-фильтров с нулями передачи на единичной окружности. Минимальнофазовые БИХ-фильтры, полученные вторым методом, будем называть здесь неклассическими.

Классические БИХ-фильтры с минимальной неравномерностью ХГВЗ

В начале определим области допустимых исходных параметров четырех классических БИХ-фильтров Баттерворта, Чебышева I, II и Золотарева-Кауэра. Затем рассмотрим решение задачи поиска в каждой из областей оптимальной точки, соответствующей фильтру с минимальной неравномерностью ХГВЗ в полосе пропускания и представим численные результаты.

Области допустимых исходных параметров

Области допустимых исходных параметров $S(\mathbf{p})$, для обсуждаемых БИХ-фильтров нижних частот показаны на рис.1. Это лишь качественные фигуры, хотя по конкретным требованиям к АЧХ, можно построить точные конфигурации областей. Компонентами вектора \mathbf{p} , размерность которого не превышает трех, могут быть следующие исходные параметры: Δa - неравномерность АЧХ в полосе пропускания, a_0 - минимальное ослабление в полосе задерживания, а также f_1 и f_2 - граничные частоты полосы пропускания и задерживания. Расчет фильтра для любой точки той или иной области приводит к допустимой АЧХ, параметры которой удовлетворяют следующим условиям

$$\Delta \hat{a} \le \Delta a_{\max}, \ \hat{a}_0 \ge a_{0\min} \ , \tag{1}$$

где $\Delta \hat{a}$ - неравномерность АЧХ в номинальной полосе пропускания ($0 \le f \le f_{ln}$), \hat{a}_0 - минимальное ослабление АЧХ в номинальной полосе задерживания ($f_{2n} \le f \le 0.5$), а Δa_{max} и a_{0min} - заданные допуски по неравномерности и ослаблению, частоты f_{ln} , f_{2n} и f нормированы относительно частоты дискретизации.

В обозначениях задаваемых допусков в (1) знак \land соответствия номинальной полосе не используется, поскольку всегда $\Delta \hat{a}_{max} = \Delta a_{max}$ и $\hat{a}_{0 \min} = a_{0 \min}$. Предполагается, что параметры в (1) выражены в децибелах и максимум АЧХ в полосе пропускания нормирован к 0 дБ. По значениям f_{1n} , f_{2n} , Δa_{max} и $a_{0 \min}$ оценивается порядок фильтра N. Строгим равенствам в (1) соответствует целое N, точечная область S(**p**) и лишь один вариант расчета фильтра.

На рис.1 наряду с допусками Δa_{max} , a_{0min} и номинальными частотами f_{1n} и f_{2n} фигурируют экстремальные параметры $\Delta \hat{a}_{min}$, \hat{a}_{0max} , Δa_{min} , a_{0max} и f_{imin} , f_{imax} , i=1,2. Характерные точки на рис.1 помечены буквами A, B, C,... На рис. 1б и 1в отмечены также кривые, а на рис.1г-1е - поверхности постоянства $\Delta \hat{a}$ и \hat{a}_0 .

Рис.1. Области допустимых исходных параметров фильтров: а) Баттерворта, б) Чебышева I, в) Чебышева II, г) - е) Золотарёва-Кауэра

Неявные выражения для описания областей S(**p**) даны в табл.1. Здесь $a(\cdot)$ - характеристики ослабления, а $\Phi(\cdot)$ - функции для определения порядков обсуждаемых фильтров. Для упрощения записи зависимость неявных функций $a(\cdot)$ и $\Phi(\cdot)$ от N опущена.

Области S(p) фильтров нижних частот						
Баттерворта	Чебышева I	Чебышева II	Золотарёва-Кауэра			
$S(f_1)$	$S(\Delta a, f_1)$	$S(a_0, f_2)$	$S(\Delta a, f_1, f_2)$			
$f_l \ge f_{ln}$,	$\Delta a \leq \Delta a_{\max},$	$a_0 \ge a_{0\min}$	$\Delta a \leq \Delta a_{max}$			
$N \ge \Phi(\Delta a_{\max} a_{0\min} f_1, f_{2n}).$	$N \ge \Phi(\Delta a, a_{0\min}, f_1, f_{2n}),$	$N \ge \Phi(\Delta a_{\max}, a_0, f_{\ln}, f_2),$	$N \ge \Phi(\Delta a, a_{0\min}, f_1, f_2),$			
	$\mathbf{a}(\mathbf{f},\Delta \mathbf{a},\mathbf{f}_1)\Big _{\mathbf{f}=\mathbf{f}_{1n}} \leq \Delta \mathbf{a}_{\max}.$	$a(f,a_0,f_2)\Big _{f=f_{2n}} \ge a_{0main}$	$\mathbf{a}(\mathbf{f},\Delta \mathbf{a},\mathbf{f}_1,\mathbf{f}_2)\Big _{\mathbf{f}=\mathbf{f}_{\mathrm{in}}} \leq \Delta \mathbf{a}_{\mathrm{max}},$			
			$a(f, \Delta a, f_1, f_2)\Big _{f=f_{2n}} \ge a_{0\min},$			
			f ₂ < 0,5.			

Таблица 1. Описание областей допустимых исходных параметров

Для фильтров Баттерворта область $S(\mathbf{p})=S(p_1)=S(f_1)$ или $S(p_1)=S(\Delta a)$ полностью определяется диапазоном изменения параметра f_1 или Δa . На рис.1а показана область $S(f_1)$ в виде отрезка прямой АВ. Для фильтров Чебышева I двумерная область $S(\Delta a, f_1)$ с характерными точками А, В, С, D представлена на рис.1б, а для фильтров Чебышева II двумерная область $S(a_0, f_2)$ с характерными точками А, С, Е, F - на рис.1в.

Для фильтров Золотарёва-Кауэра трехмерная область $S(\Delta a, f_1, f_2)$ может иметь три вида конфигураций, показанных на рис.1г-1е. Начало координат помещено в точку А. Точки А, В, С, D лежат в плоскости $f_2 = f_{2n}$. Область на рис.1г образована пересечением плоскости ВЕF и трех поверхностей BDE, BDF и DEF, которым соответствует первое, второе, третье и четвертое соотношение в табл.1 при знаке равенства в них. Области на рис.1д и 1е обусловлены предельными переходами, согласно схеме на рис.2. Зоны предельных

Рис.2. Схема предельных переходов

переходов от фильтров Золотарёва-Кауэра к фильтрам Чебышева показаны на рис.1д, а к фильтрам Чебышева и Баттерворта - на рис.1е. Для образовавшихся плоских граней FFF'' имеем $f_2=0,5$ (последнее соотношение для фильтров Золотарёва-Кауэра в табл.1 при знаке равенства в нем), а для появившихся отрезков прямых D'D'' на рис.1д и D'F' на рис.1е - $\Delta a = f_1 = 0$.

Если вернуться к областям фильтров Чебышева I и II на рис.16 и 1в, то здесь, пользуясь схемой на рис.2, можно указать точки возможного предельного перехода к фильтрам Баттерворта. На рис.16 это точка D при $\Delta a = \Delta a_{\min} = 0$ и $f_1 = f_{1\min} = 0$, а на рис.1в - точка F при $a_0 = a_{0\max} = \infty$ и $f_2 = f_{2\max} = 0,5$ (в [4] вместо точки F ошибочно говорится об отрезке прямой).

Заметим, что предельный переход от одного фильтра к другому имеет место, если для каждого из этих фильтров одинакового порядка выполняются условия (1).

Области S(**p**) на рис.1а-1г были ранее представлены в [7], на рис.1а-1г,1е – в [4] и на рис.1г-1е – в [8]. В работах [7,8] даны математические описания областей в явной и неявной форме. Более детальное пояснение предельных переходов дано в [4,8].

Оптимальные точки областей

Допустим, что область S(**p**) фильтра Золотарёва-Кауэра представляет собой точку, что соответствует строгим равенствам в (1). В этой ситуации фильтры Золотарёва-Кауэра обладают не только глобально оптимальной АЧХ, что им свойственно, независимо от размера S(**p**), но и глобально оптимальной ХГВЗ, которая в конкретных случаях может оказаться совершенно неприемлемой. Подобные рассуждения можно отнести и к трем другим обсуждаемым здесь классическим фильтрам, АЧХ которых являются в определенном смысле глобально оптимальными. Получить лучшее соотношение между параметрами АЧХ и ХГВЗ можно лишь в случае неточечной области S(**p**), подобрав вектор исходных параметров **p** или рассчитав минимально-фазовый БИХ-фильтр другими методами.

Задачу синтеза классических БИХ-фильтров с минимальной неравномерностью ХГВЗ можно сформулировать как

$$\Delta \tau(\mathbf{p}) = \tau_{\max}(\mathbf{p}) - \tau_{\min}(\mathbf{p}) \rightarrow \min,$$

$$\Delta \hat{\mathbf{a}}(\mathbf{p}) \leq \Delta \mathbf{a}_{\max}, \ \hat{\mathbf{a}}_0(\mathbf{p}) \geq \mathbf{a}_{0\min},$$

$$\mathbf{p} \in \mathbf{S}(\mathbf{p}),$$
(2)

где ∆т - неравномерность ХГВЗ в номинальной полосе пропускания, а т_{max} и т_{min} - максимальное и минимальное значения ХГВЗ в этой полосе. Положим для дальнейшего, что эти параметры ХГВЗ выражены в отсчетах частоты дискретизации.

Решить поставленную задачу аналитически, затруднительно из-за сложности функций входящих в (2). Решения были получены косвенным путем в [4]. На основе результатов прямого исследования областей S(**p**) на рис.1 и известных фактов о взаимосвязи параметров АЧХ и о влиянии их на неравномерность ХГВЗ сделаны следующие выводы.

Для фильтров Баттерворта минимуму $\Delta \tau$ соответствует точка В в S(f₁) на рис.1а, а для фильтров Чебышева II - точка С в S(a₀, f₂) на рис.1в. Для фильтров Чебышева I и Золотарёва-Кауэра минимум $\Delta \tau$ расположен в некоторой точке на кривой BD, соответственно в областях S($\Delta a, f_1$) на рис.1б и S($\Delta a, f_1, f_2$) на рис.1.г-1е. Процедура нахождения такой оптимальной точки сводится к поиску минимума функции одной переменной, что легко выполнить на дискретном наборе частот f₁. Фильтры Золотарёва-Кауэра имеют наименьшую неравномерность $\Delta \tau$, фильтры Баттерворта - наибольшую. Фильтры Чебышева занимают промежуточное положение, причем предпочтительнее фильтры Чебышева II, но при очень широкой полосе пропускания фильтры Чебышева I могут иметь несколько меньшие Δτ, чем фильтры Чебышева II.

Численные результаты

Проиллюстрируем описанные способы выбора оптимальных точек в областях S(p) на рис.1 для следующих требований к AЧХ:

$$\Delta a_{\text{max}} = 3 \text{ gB}, a_{0 \text{min}} = 45 \text{ gB}, f_{1n} = 0, 1, f_{2n} = 0, 2.$$
 (3)

На рис.3 для обсуждаемых фильтров представлены семейства зависимостей неравномерности ХГВЗ $\Delta \tau$ от исходных параметров областей S(**p**), построенные для требований (3). Точки A, B, C,... на рис.36-3г соответствуют аналогичным точкам в областях S(**p**) на рис.16-1г.

Рис.3. Зависимости неравномерности ХГВЗ от исходной граничной частоты f_1 или f_2 для фильтров а) Баттерворта при N=7,8 и 9, б) Чебышева I при N=5, \hat{a}_0 =45; 47;...; 55 и 56,66дБ, в) Чебышева II при N=5, $\Delta \hat{a}$ =0,286; 0,4; 0,6;...; 1,8 и 3 дБ, г) Золотарёва-Кауэра при N=4, f_2 =0,2, \hat{a}_0 =45; 47;...; 61 и 62,16 дБ

Для фильтров Баттерворта семейство зависимостей $\Delta \tau$ от исходной частоты f_1 показано на рис.3а. Семейство построено для частот f_1 области $S(f_1)$ на рис.1а при трех значениях N, включая минимальное N=7. Как видим, минимум $\Delta \tau$ для каждого N соответствует максимальной частоте f_1 или точке B в области $S(f_1)$ на рис.1а. При N=7 минимум $\Delta \tau = 6$.

Для фильтров Чебышева I семейство зависимостей $\Delta \tau$ от f_1 на рис.36 построено для ряда кривых $\hat{a}_0 = \text{const } B$ области $S(\Delta a, f_1)$ на рис.16 при минимальном N=5. Минимум $\Delta \tau = 3,9$ находится на кривой BD. Для фильтров Чебышева II семейство зависимостей $\Delta \tau$ от f_2 на рис.3в построено для ряда кривых $\Delta \hat{a} = \text{const } B$ области $S(a_0, f_2)$ на рис.1в при N=5. Минимум $\Delta \tau = 3$ находится в точке C. Для фильтров Золотарева-Кауэра семейство зависимостей $\Delta \tau$ от f_1 на рис.3г построено для ряда кривых $\hat{a}_0 = \text{const } B$ области $S(\Delta a, f_1, f_2)$ на рис.1г при $f_2 = f_{2n}$ и минимальном N=4. Минимум $\Delta \tau = 1,8$ находится на кривой BD.

Согласно рис.3 разброс по $\Delta \tau$ для фильтров Золотарёва-Кауэра и Чебышева I достигает примерно 10 раз, для фильтров Чебышева II – примерно двух раз, а для фильтров Баттерворта при N=7 он очень мал. На самом деле для фильтров Золотарёва-Кауэра разброс, но лишь в сторону увеличения $\Delta \tau$, больше указанного, поскольку семейство кривых на рис.3г, построенное при $f_2 = f_{2n}$, не охватывает всю область S($\Delta a, f_1, f_2$) на рис.1г.

Для всех фильтров в табл.2 приведены минимальные значения $\Delta \tau$, найденные при разных N. Кроме того, здесь даны исходные параметры, по которым получены эти результаты.

Фильтр	Ν	Исходные г	$\Delta \tau$			
		∆а , дБ	\mathbf{f}_1			
	7		0,10617	6,0		
Баттеррорта	8	-	0,11562	5,2		
Бапсрворта	9		0,12343	4,1		
	5	1,492	0,11565	3,9		
	6	0,249	0,1201	3,6		
тт <i>г</i> т	7	0,842	0,1448	2,3		
Чебышева І	8	0,12	0,144	2,5		
	9	0,039	0,148	2,5		
	4	1,147	0,13075	1,8		
Запатарара	5	2,384	0,17025	1,5		
золотарева-	6	0,243	0,1712	1,2		
Кауэра	7	1,72	0,1918	0,9		
$(f_2 = f_2 = 0.2)$	8	0,077	0,188	1,1		
× 2 2n - , ,	9	1,596	0,19793	0,8		
	Ν	Исходные параметры		$\Delta \tau$		
		а ₀ , дБ	f_2			
	5			3,0		
Фильтр	6			1,9		
Чебышева II	7	45	0,2	1,5		
	8			1,3		
	9			1,3		

Габлица 2.	Минимальные значения $\Delta \tau$
	для классических фильтров

На рис.4 показаны зависимости $\Delta \tau$ от N построенные по данным табл.2. Как видим, дополнительное уменьшение $\Delta \tau$ (более чем в 2 раза) может быть получено для фильтров большего порядка. Однако увеличение N более чем в 2 раза малоэффективно. Фильтры

Золотарёва-Кауэра имеют наименьшие, а фильтры Баттерворта - наибольшие значения $\Delta \tau$. Фильтры Чебышева занимают промежуточные положения.

Рис.4. Зависимости минимальной неравномерности ХГВЗ классических фильтров от порядка

Неклассические минимально-фазовые БИХ-фильтры с минимальной неравномерностью ХГВЗ

Надлежащий выбор исходных параметров АЧХ и порядка позволяет получить классические фильтры с минимальной неравномерностью ХГВЗ в номинальной полосе пропускания. Однако такой подход может не дать ожидаемых результатов, поскольку обсуждаемые фильтры, когда-то предложенные для получения желаемых АЧХ, не обязательно обладают наименьшей неравномерностью ХГВЗ. Поэтому можно попытаться улучшить классические решения, сохраняя свойство минимальной фазы. Далее сформулируем задачу синтеза неклассических минимально-фазовых каскадных БИХ-фильтров с минимальной неравномерностью ХГВЗ, определим начальные приближения, представим возможные методы условной и безусловной оптимизации для решения этой задачи, приведем примеры синтеза фильтров и покажем, что результаты, полученные для классических БИХ-фильтров, могут быть значительно улучшены.

Постановка задачи синтеза фильтров

Передаточную функцию каскадного БИХ-фильтра нижних частот N-ого порядка запишем в виде

$$H(z) = \prod_{i=1}^{K} \frac{1 + B_{1i}z^{-1} + B_{2i}z^{-2}}{1 + A_{1i}z^{-1} + A_{2i}z^{-2}},$$
(4)

где K=N/2 и K=(N+1)/2, соответственно для четных и нечетных N, коэффициенты $A_{2m} = B_{2im} = 0$ для некоторого m \leq K и нечетного N.

Задачу минимизации неравномерности ХГВЗ в номинальной полосе пропускания для БИХ-фильтров с передаточной функцией (4) сформулируем как

$$\Delta \tau(\mathbf{A}) = \tau_{\max}(\mathbf{A}) - \tau_{\min}(\mathbf{A}) \rightarrow \min,$$

$$\Delta \hat{a}(\mathbf{C}) \leq \Delta a_{\max}, \ \hat{a}_0(\mathbf{C}) \geq a_{0\min},$$

$$a_t(\mathbf{C}) \geq a_{t\min},$$

$$\mathbf{A} \in \mathbf{U}, \mathbf{B} \in \mathbf{R},$$

(5)

где **A** и **B** - векторы искомых коэффициентов знаменателей и числителей в (4), вектор **C** включает **A** и **B**, a_t - минимальное ослабление AЧХ в переходной полосе и его допустимое значение a_{tmin} , выраженные в децибелах, U – область устойчивости, R – область соответствующая единичной окружности.

В отличие от (2) $\Delta \tau$, τ_{max} , τ_{min} , $\Delta \hat{a}$ и \hat{a}_0 в (5) представлены как функции вектора **A** или **C**. Требование к вектору **B** обеспечивает расположение нулей H(z) на единичной окружности и постоянство XГВЗ (линейность ФЧХ) для фильтра с передаточной функцией в виде числителя (4).

Обычно при синтезе частотных фильтров к АЧХ в переходной полосе не предъявляется никаких требований. Это относится и к рассмотренным выше классическим фильтрам, для которых всплеск АЧХ в переходной полосе не превышает 0дБ, или иначе ослабление АЧХ $a_t \ge 0$ дБ. Однако при минимизации неравномерности ХГВЗ или нелинейности ФЧХ всплеск АЧХ в переходной полосе может оказаться неприемлемым и поэтому его желательно ограничить [3,9], что и сделано в (5). Возможно еще более жесткое условие, а именно АЧХ в переходной полосе с увеличением частоты монотонно убывает. Это условие приводит к некоторому ухудшению результатов в сравнении с простым ограничением всплеска [9].

Формулировка задачи синтеза (5) с функциями ограничениями, выраженными в децибелах, обусловлена удобством изложения данной статьи. На практике целесообразно представить эти функции в относительных единицах.

Начальные приближения

При решении поставленной задачи в качестве начального приближения удобно взять тот или иной классический БИХ-фильтр, поскольку все ограничения в (5) для такого исходного фильтра оказываются выполненными.

В общем случае, требование в (5) к вектору В означает, что коэффициенты числителей H(z) в (4) для фильтров нижних частот должны удовлетворять следующим условиям:

$$|B_{1i}| \le 2, B_{2i} = 1 \quad \forall i = 1...K \text{ при четном N } u \quad \forall i \ne m \text{ при нечетном N};$$
(6)
$$B_{1m} = 1, B_{2im} = 0 \quad \text{при нечетном N}.$$

В частном случае имеет место строгое равенство в (6) и тогда в (5) неизвестен только вектор **A**, поскольку вектор **B** будет содержать лишь известные целочисленные компоненты. Общему случаю отвечают фильтры Чебышева II и Золотарёва-Кауэра, а частному - фильтры Баттерворта и Чебышева I.

Целесообразно при решении задачи (5) в качестве исходного выбрать фильтр Золотарёва-Кауэра или Чебышева I. Далее используем целый ряд исходных фильтров Золотарёва-Кауэра рассчитанных для точек области S($\Delta a, f_1, f_2$) на рис.1г, 1д или 1е, располагающихся на кривых $\hat{a}_0 = \text{const}$ в некоторой Δ -окрестности кривой BD при $a_{0\min} \leq \hat{a}_0 \leq a_{0\min} + \Delta$ и $f_2 = f_{2n}$ [5]. Точку на той или иной кривой $\hat{a}_0 = \text{const}$ будем характеризовать параметрами f_1, \hat{a}_0 . Напомним, что на кривой BD, для которой $\hat{a}_0 = a_{0\min}$, находится оптимальная точка, соответствующая минимуму Δτ для фильтров Золотарёва-Кауэра.

Методы решения задачи

Задачу (5) можно решить теми или иными методами нелинейного программирования. Применим для сравнения два известных метода безусловной и условной оптимизации (см. например [10,11] и ссылки в этих работах), а именно метод градиента (МГ) и метод градиента с возвратом (МГВ).

В МГВ, как и в МГ, поиск в области допуска ведется в направлении -grad $\Delta \tau$ с постоянным шагом [10]. Для задачи (5) с тремя ограничениями на параметры АЧХ возможны семь ситуаций, когда в методе МГВ требуется возврат в область допуска. Эти три ограничения можно привести к виду $g_i \leq 0$, i=1,2,3, а возникающие ситуации описать функциями G_m , m=1,2,...,7. Так $G_m = g_m$, m=1, 2 или 3 при нарушении одного из трех ограничений, $G_4 = g_1 + g_2$, $G_5 = g_1 + g_3$ или $G_6 = g_2 + g_3$ - при нарушении двух из трех ограничений и $G_7 = g_1 + g_2 + g_3$ при нарушении всех трех ограничений. После возникновения m-ой ситуации производится пошаговое перемещение в направлении -grad G_m для возврата в зону допуска.

Результаты решения задачи (5) с помощью обсуждаемых методов оптимизации можно улучшить благодаря следующим приемам:

- поиск на большем числе наборов параметров f_1, \hat{a}_0 ,
- подбор начального шага поиска,
- поиск на большем числе наборов параметров f₁, â₀ в окрестности найденного оптимума,
- неоднократный повтор поиска с уменьшенным шагом в окрестности найденного оптимума.

Для оценки необходимых градиентов используем аналитические выражения. Текущие оценки параметров АЧХ и ХГВЗ выполним по 100 частотным точкам в каждой из полос, а окончательные оценки для найденного решения уточним по 500 точкам.

Численные результаты

Представим два примера решения задачи (5), которые были рассмотрены в [5]. Первый пример с требованиями к АЧХ (3), а второй – с требованиями к АЧХ из [12], которые использовались многими авторами. Первый пример проиллюстрируем и обсудим более подробно, что позволит понять детали связанные с решением задачи (5) методами условной и безусловной оптимизации.

Пример 1. Как было отмечено выше требованиям (3) удовлетворяет фильтр Золотарёва-Кауэра с N \geq 4. Вначале уделим внимание безусловной оптимизации на основе МГ, а затем условной - на основе МГВ. В обоих случаях ограничимся исходными фильтрами Золотарёва-Кауэра рассчитанными для N=5, f₁=0,08, 0,1, 0,12, \hat{a}_0 =45, 50, 55 дБ и f₂ = f_{2n}=0,2. Таким образом, количество исходных точек f₁, \hat{a}_0 равно девяти.

Интересно посмотреть на процессы изменения параметров $\Delta \tau$, $\Delta \hat{a}$, \hat{a}_0 и a_t синтезируемого фильтра от числа итераций в каждом из методов. Для уменьшения числа графиков вместо контролируемых параметров $\Delta \hat{a}$ и \hat{a}_0 используем максимальную взвешенную ошибку АЧХ, связанную с этими параметрами как

$$e = max \left[\left(1 - 10^{-0.05 \Delta \hat{a}} \right) / \left(1 - 10^{-0.05 \Delta a_{max}} \right), 10^{-0.05 \left(\hat{a}_0 - a_{0 \min} \right)} \right]$$

В этом случае двум ограничениям на $\Delta \hat{a}$ и \hat{a}_0 в (5) соответствует одно условие $e \le 1$.

Безусловная оптимизация. На рис.5 представлены зависимости параметров $\Delta \tau$, е и а, синтезируемого фильтра от числа итераций в МГ для трех из девяти заданных

Рис.5. Зависимости параметров синтезируемого фильтра от числа итераций в МГ для трех значений \hat{a}_0 исходного фильтров Золотарева-Кауэра с N=5, f_1 =0,12 и f_2 =0,2: а) неравномерность $\Delta \tau$, б) ошибка е и в) ослабление a_t

исходных точек с $f_1 = 0,12$, $\hat{a}_0 = 45$, 50, 55дБ. Согласно рис.5а с увеличением числа итераций значение $\Delta \tau$ существенно уменьшается. Характер трех кривых зависит от значения \hat{a}_0 . Замечено, что все три процесса минимизации $\Delta \tau$ прерываются нарушением условий устойчивости, не доходя до $3 \cdot 10^4$ итераций, причем это обусловлено перемещением доминирующей (ближайшей к единичной окружности) пары комплексно-сопряженных полюсов фильтра за пределы единичной окружности.

Для каждого \hat{a}_0 примерно одно и тоже устойчивое решение с очень малым значением $\Delta \tau \approx 0,003$ можно получить при числе итераций более 10^4 . Однако это решение становится бесполезным, если обратиться к зависимостям на рис.5б. Еще до 10^4 итераций значение ошибки е начинает возрастать и становится больше единицы, что по условию решаемой задачи неприемлемо. Тем не менее, на рис.5б можно выделить интервалы, в которых $e \le 1$. Один находится в ближней зоне (до 100 итераций) для всех трех кривых, а другой - в дальней зоне (от 10^3 до 10^4 итераций) и лишь для двух кривых.

На рис.5в показаны зависимости ослабления в переходной полосе a_t от числа итераций. Выбор решения с $e \le 1$ на рис.5б из ближней или дальней зоны зависит от значения a_{tmin} в (5), которое до сих пор не было задано. Если $a_t \ge a_{tmin} = 0$ дБ, то решение с $e \le 1$ и минимальной $\Delta \tau$ можно найти лишь в ближней зоне.

Результаты безусловной оптимизации для всех девяти исходных точек f_1 , \hat{a}_0 представлены в табл.3, где также указано число потребовавшихся итераций. Для некоторых значений \hat{a}_0 даны два решения - в ближней и дальней зоне (вторая строка цифр). Решение в дальней зоне определяется, исходя из того, чтобы получить как можно большее значение a_t . Поэтому процесс оптимизации должен быть прерван при появлении первого допустимого решения с $e \le 1$, что обусловлено поведением кривых на рис.5в.

Данные табл.3 дают представление о влиянии выбора исходных параметров на результаты оптимизации. Как видим, для лучших решений в ближней и дальней зоне $\Delta \tau = 0,485$ и $\Delta \tau = 0,036$, соответственно. Благодаря приемам, описанным выше, эти значения были дополнительно уменьшены до $\Delta \tau = 0,212$ дБ и $\Delta \tau = 0,009$. Для сравнения, в [5] в ближней зоне получено $\Delta \tau = 0,315$.

Исходные		Параметры синтезированных			Число
параметры		фильтров			итераций
\mathbf{f}_1	â ₀ , дБ	$\Delta \tau$	e	а _t , дБ	
	45	0,598	0,969	2,86	28
0,08	50	1,09	0,982	2,94	23
	55	2,23	0,970	2,89	18
		0,049	1	-1,05	1005
	45	0,529	0,960	2,86	26
	50	0,848	0,986	2,95	21
0,1		0,037	1	-0,695	1577
	55	1,40	0,971	2,88	17
		0,057	1	- 1,32	1577
	45	0,485	0,964	2,87	24
0,12	50	0,725	0,972	2,90	18
		0,036	1	-0,839	3478
	55	1,03	0,949	2,50	13
		0,053	1	-1,39	2899

Таблица 3. Результаты безусловной оптимизации

Условная оптимизация. В данном случае положим $a_{tmin} = 0$ дБ. На рис.6 представлены зависимости параметров $\Delta \tau$, е и a_t синтезируемого фильтра от числа итераций в МГ и МГВ для исходной точки с $f_1 = 0,08$, $\hat{a}_0 = 55$ дБ. Для этой точки (из девяти ранее упомянутых) МГВ дает наилучший результат. Графики на рис.6 наглядно иллюстрируют, как видоизменяются зависимости $\Delta \tau$, е и a_t от числа итераций в случае применения МГВ вместо МГ.

Рис.6. Зависимости параметров синтезируемого фильтра от числа итераций в МГ и МГВ для исходного фильтра Золотарева-Кауэра с N=5, $\hat{a}_0 = 55 \text{ дБ}$, $f_1 = 0.08 \text{ и}$ $f_2 = 0.22$; a) неравно-мерность $\Delta \tau$, б) ошибка е и в) ослабление a_1

На рис.6а кривая $\Delta \tau$ для МГВ после достижения минимума резко возрастает. На рис.6б и 6в наблюдается движение вдоль границ с е=1 и $a_t = 0$ дБ и резкое нарушение этих границ после 10^3 итераций с последующим нарушением условия устойчивости. Заметим,

что резкие колебания кривой для МГВ на рис.6в после 10^3 итераций обусловлены недостаточным числом точек для оценки a_t . Однако, нет смысла увеличивать это число, поскольку процесс поиска должен быть прерван из-за резкого возрастания $\Delta \tau$ еще до появления этого эффекта. Метки на кривых для МГВ на рис.6 обозначают решение задачи (5) с $\Delta \tau = 0,032$, e=1 и $a_t = 0,01$ дБ. Благодаря приемам, описанным выше можно получить фильтр с $\Delta \tau = 0,022$, e=1 и $a_t = 0$ дБ. При этом исходный фильтр, рассчитанный для точки $f_t = 0,083$, $\hat{a}_0 = 54$ дБ, имеет $\Delta \tau = 4,6$.

Карты полюсов/нулей исходного и оптимизированного фильтров показаны на рис.7а, 76. Как видим, для этих фильтров сильно отличаются лишь позиции доминирующих полюсов. Для сравнения на рис.7в приведена карта полюсов/нулей для фильтра Золотарёва-Кауэра с минимальной неравномерностью ХГВЗ. Хотя для этого фильтра согласно табл.2 $\Delta \tau = 1,5$ при N=5, использование его в качестве исходного дает результат гораздо хуже полученного.

Рис.7. Карты полюсов/нулей а) исходного фильтра Золотарева-Кауэра (Δτ=4,5), в) синтезированного с помощью МГВ фильтра (Δτ=0,022) и в) фильтра Золотарева Кауэра с минимальной неравномерностью ХГВЗ (Δτ=1,5)

Сравнение результатов. Параметры синтезированных с помощью МГ и МГВ неклассических фильтров сведены в табл.4. Там же для сравнения даны параметры фильтра Золотарёва-Кауэра с минимальной неравномерностью ХГВЗ взятые из табл.2 при N=5. Как видим, для неклассических фильтров можно получить значительно меньшие значения $\Delta \tau$, чем для фильтра Золотарева-Кауэра, а именно в 68 раз при $a_t \ge 0$ дБ и в 167 раз при $a_t =$ 0,869 дБ. Найденные фильтры являются минимально-фазовыми и согласно табл.4 их максимальные значения ХГВЗ в номинальной полосе пропускания не превышают значения для фильтра Золотарёва-Кауэра. В случае, когда всплеск АЧХ в переходной полосе недопустим ($a_t \ge 0 \, dE$) применение МГВ позволяет для данного примера более, чем на порядок уменьшить значение $\Delta \tau$, полученное с помощью МГ.

Минимально-фазовые фильтры (N=5)						
Золотарёва-Кауэра			Неклассические			
$\Delta \tau$	τ_{max}	а _t , дБ	Δτ	τ_{max}	а _t , дБ	Метод
1.5	2.50	0	0,212	3,73	1,38	МΓ
1,5	3,78	0	0,009	3,47	-0,80	
			0,022	3,58	0	МΓВ

Таблица 4. Параметры синтезированных фильтров

В табл.5 приведены значения $\Delta \tau$ и коэффициентов, на рис.8а и 86 - АЧХ, а на рис.8в - ХГВЗ всех синтезированных фильтров. В номинальной полосе задерживания ($0,2 \le f \le 0,5$) на рис.8а и в номинальной полосе пропускания ($0 \le f \le 0,1$) на рис.8б АЧХ всех фильтров удовлетворяют заданным требованиям. В номинальной полосе пропускания АЧХ трех неклассических фильтров практически совпадают. Наибольшие различия проявляются в переходной полосе по уровням всплесков, которые соответствуют значениям a_t в табл. 4.

Таблица 5.	Значения $\Delta \tau$	и коэффициентов
	синтезировал	нных фильтров

Δτ	i	A _{1i}	A _{2i}	B _{1i}	\mathbf{B}_{2i}
	1	-0,95286628	0,93792855	-0,56547128	1
1,5	2	-1,18877729	0,73368931	0,10728159	1
	3	-0,73139252	0	1	0
	1	-1,08353967	0,89569467	-0,54173064	1
0,212	2	-1,00498407	0,36836692	0,30157007	1
	3	-0,53517859	0	1	0
0,009	1	-1,10773610	0,91457912	-0,54386197	1
	2	-0,94693713	0,32414053	0,28519270	1
	3	-0,51708961	0	1	0
0,022	1	-1,12518232	0,90122197	-0,53730226	1
	2	-0,96972502	0,32266890	0,36947927	1
	3	-0,50218650	0	1	0

Согласно представленным результатам уменьшение неравномерности XГВЗ в номинальной полосе пропускания для всех полученных минимально-фазовых БИХфильтров приводит фактически к расширению полосы пропускания. Дополнительное уменьшение этой неравномерности для неклассических фильтров можно достичь, увеличивая всплеск АЧХ в переходной полосе. Интересно, что подобные факты наблюдаются и для неминимально-фазовых БИХ-фильтров [3].

<u>Пример 2.</u> Требования к АЧХ [12]: $\Delta a_{max} = 0,5$ дБ, $a_{0min} = 32$ дБ, $a_t = 0$ дБ, $f_{1n} = 0,25$ и $f_{2n} = 0,3$. Этим требованиям удовлетворяет фильтр Золотарёва-Кауэра с N≥4. В данном случае уменьшить минимальные неравномерности ХГВЗ фильтров Золотарёва-Кауэра для N=4, 5,...,12 с помощью МГ, также как и в [5], не удается. Применение МГВ не приводит к существенным результатам. Так, например при N=5 для фильтра Золотарёва-Кауэра с минимальной неравномерностью ХГВЗ, соответствующего точке В на рис.1г, значение $\Delta \tau = 3,85$, а для фильтра найденного с помощью МГВ - $\Delta \tau = 3,76$. Увеличение допустимого всплеска АЧХ до 3 дБ ($a_t = -3$ дБ) также дает мало значимый результата с

 $\Delta \tau = 3,19$. Дальнейшее уменьшение $\Delta \tau$ до 1,75 возможно при допущении $a_t = -20$ дБ. Такое несущественное уменьшение $\Delta \tau$ при сильном снижении требования к a_t можно объяснить узкой относительной переходной полосой. Действительно в данном примере отношение переходной полосы к полосе пропускания равно 0,2, а в примере 1, для которого получены превосходные результаты, отношение равно 1.

Рис.8. Частотные характеристики синтезированных БИХ-фильтров а) АЧХ в основной полосе, б) АЧХ в номинальной полосе пропускания и переходной полосе, в) ХГВЗ в номинальной полосе пропускания

Таким образом, невозможность достаточного расширения полосы пропускания в процессе оптимизации из-за узкой относительной переходной полосы требует допущения очень большого всплеска АЧХ. Однако чрезмерный всплеск АЧХ в переходной полосе может оказаться неприемлемым на практике.

Обсуждаемый пример был рассмотрен в ряде публикаций и в частности в [3], где при N=12 были получены варианты решений с чрезвычайно малой неравномерностью ХГВЗ, но лишь для неминимально-фазовых фильтров.

Заключение

Представлены два подхода к синтезу минимально-фазовых БИХ-фильтров с минимальной неравномерностью ХГВЗ в номинальной полосе пропускания и требуемой АЧХ. Хотя рассмотрены только фильтры нижних частот, синтез может быть распространен и на полосовые фильтры.

Первый подход основан на оптимальном выборе исходных параметров АЧХ классических фильтров в пределах определенной области допуска. В зависимости от требований к АЧХ и порядка фильтров разброс в значениях неравномерности ХГВЗ для точек области может быть очень большим, что оправдывает применение этого подхода. Наименьшие неравномерности ХГВЗ можно достичь для фильтров Золотарёва-Кауэра, затем в зависимости от ширины полосы пропускания для фильтров Чебышева II или Чебышева I и лишь потом для фильтров Баттерворта. Дополнительное уменьшение неравномерности ХГВЗ можно получить для большего порядка фильтров. Однако увеличение порядка более чем в два раза малоэффективно.

Второй подход основан на безусловной и условной оптимизации коэффициентов каскадного фильтра с нулями передачи на единичной окружности. При этом ряд фильтров Золотарёва-Кауэра используется в качестве исходных. Полученные таким путем неклассические минимально-фазовые фильтры могут иметь значительно меньшие неравномерности ХГВЗ (в частности в 68 и 167 раз), чем присущие фильтрам Золотарёва-Кауэра найденным с помощью первого похода. К сожалению, результаты оптимизации сильно зависят от относительной переходной полосы и допустимого уровня всплеска АЧХ в этой полосе. Желание получить узкую переходную полосу и малый допустимый уровень всплеска может свести на нет эффект оптимизации. Для получения существенного результата в случае узкой переходной полосы требуется допущение чрезмерного всплеска АЧХ, что может оказаться неприемлемым на практике. Это ограничивает возможности минимизации неравномерности ХГВЗ минимально-фазовых БИХ-фильтров.

Литература

- 1. Оппенгейм А., Шафер Р. Цифровая обработка сигналов. М.: Техносфера. 2012. 1046 с.
- 2. Saramaki T., Neuvo Y. Digital filters with equiripple magnitude and group delay. IEEE Trans. 1984. ASSP-32. No. 6. P. 1194-1200.
- Nongpiur R.C., Shpak D.J., Antoniou A. Improved design method for nearly linear-phase IIR filters using constrained optimization. IEEE Trans. on Signal Processing. 2013. V.61. No.4. P. 895-906.
- 4. Мингазин А. Резервы классических аппроксимаций цифровых БИХ-фильтров. Современная электроника. 2012. №9. С.62-71. (Статья с исправленными опечаткамиwww.radis.ru/articles/aming22.pdf).
- Мингазин А.Т. Минимально-фазовые БИХ-фильтры с минимальной неравномерностью ХГВЗ и требуемой АЧХ. //16-я Международная конференция. 'Цифровая обработка сигналов и ее применение'. (DSPA). 2014. Т.1. С.147-151.
- 6. Пупалайкис П.Д. Групповая задержка и ее влияние на тестирование потоков последовательных данных. Компоненты и технологии. 2007. № 1. С.150-157.
- 7. Мингазин А.Т. Начальные приближения для синтеза цифровых фильтров с минимальной длиной слова коэффициентов. // Электронная техника. 1983. Сер.10. № 6. Р. 3-8.
- 8. Мингазин А.Т. Область допустимых исходных параметров цифровых фильтров Золотарева-Кауэра//15-я Международная конференция. 'Цифровая обработка сигналов и ее применение'. (DSPA). 2013. Т.1. С.125-128.
- 9. Surma-aho K., Saramaki T. A systematic technique for designing approximately linear phase recursive digital filters. IEEE Trans. CAS-II. 1999. V.46, No.7. P. 956-963.
- 10. Карпушкин С.В. Численные методы в проектных расчетах оборудования: Электронное учебное пособие. Тамбов. 2008.
- 11. Пашкеев С.Д., Минязов Р.И., Могилевский И.Д. Машинные методы оптимизации в технике связи. М.: Связь. 1976. 272 с.
- 12. Deczky A.G. Synthesis of recursive digital filters using the minimum p-error criterion. IEEE Trans. 1972. AU-20. No. 4. P.257-263.

29 апреля 2015.