Резервы классических аппроксимаций цифровых БИХ-фильтров

Александр Мингазин (Москва)

Статья посвящена проблеме выбора исходных параметров АЧХ классических цифровых БИХ-фильтров Баттерворта, Чебышева (I и II) и Золотарёва–Кауэра с целью получения минимальной неравномерности ХГВЗ и/или минимальной нелинейности ФЧХ в полосе пропускания. Рассмотрен ряд вопросов, а именно: как найти оптимальные параметры, какая аппроксимация является наилучшей, насколько хороши решения с квантованными коэффициентами, можно ли улучшить результаты, найденные ранее оригинальными методами аппроксимации, и как сильно влияет выбор исходных параметров на выравнивание ХГВЗ с помощью фазовых корректоров.

Введение

Для синтеза цифровых БИХ-фильтров необходимо задать требования к параметрам АЧХ, таким как предельно допустимая неравномерность в полосе пропускания, предельно допустимое минимальное ослабление в полосе задерживания и номинальные граничные частоты этих полос. Соответствующий порядок передаточной функции обычно выбирают так, что требования удовлетворяются с запасом. При этом для той или иной аппроксимации АЧХ существует определённая область допустимых исходных параметров $S(\mathbf{p})$, где \mathbf{p} – вектор исходных параметров [1]. Расчёт фильтра для любой точки области будет приводить к допустимой АЧХ. Размерность р и форма S(p) зависят от вида аппроксимации (Баттерворта, Чебышева и др.) и типа фильтра (нижних, верхних частот и др.), а её размеры – от заданных требований к АЧХ и порядка фильтра.

Перед разработчиком стоит задача выбора исходных параметров в S(p)для расчёта фильтра. Работы [2–9] посвящены определению экстремально улучшенного значения одного из параметров при заданных остальных. Так, например, неравномерность в полосе пропускания может быть максимально уменьшена или полоса пропускания экстремально расширена без нарушения требований к другим параметрам. Такой подход означает, что совокупность исходных значений параметров будет принадлежать границе S(p).

В работе [8] представлена компьютерная программа Extremal для расчёта экстремальных параметров АЧХ аналоговых и цифровых фильтров нижних и верхних частот полосовых и режекторных фильтров применительно к классическим аппроксимациям Баттерворта, Чебышева I, Чебышева II (инверсная аппроксимация Чебышева) и Золотарёва–Кауэра (эллиптическая). Там же приведён пример расчёта для полосового фильтра. Кроме того, для двух фильтров нижних частот Золотарёва–Кауэра проиллюстрирована сильная зависимость неравномерности XГВЗ в полосе пропускания от параметров АЧХ.

В данной статье мы исследуем резервы классических аппроксимаций цифровых БИХ-фильтров в смысле получения минимальной неравномерности ХГВЗ и/или минимальной нелинейности ФЧХ в полосе пропускания для точек, принадлежащих области *S*(p). Эта проблема до сих пор недостаточно изучена. Нас будут интересовать следующие вопросы:

- как найти оптимальное решение;
- какая аппроксимация даёт наилучшие результаты;
- насколько хороши решения с квантованными коэффициентами;
- как сильно влияет выбор исходных параметров на результаты выравнивания ХГВЗ с помощью фазовых корректоров.

Далее мы ограничимся рассмотрением БИХ-фильтров нижних частот, полученных по аналоговым прототипам методом билинейного преобразования.

ОБЛАСТИ ДОПУСТИМЫХ ИСХОДНЫХ ПАРАМЕТРОВ

На рисунке 1 представлены области допустимых исходных параметров S(p) для четырёх обсуждаемых аппроксимаций БИХ-фильтров нижних частот. Расчёт фильтра для любой точки той или иной области приводит к допустимой АЧХ, параметры которой удовлетворяют следующим условиям:

$$\Delta a \le \Delta a_{\max}, a_0 \ge a_{0\min}, \tag{1}$$

где $\Delta \hat{a}$ – неравномерность АЧХ в номинальной полосе пропускания ($0 \le f \le$ $\leq f_{1n}$) и \hat{a}_0 – минимальное ослабление АЧХ в номинальной полосе задерживания ($f_{2n} \le f \le 0,5$), а Δa_{\max} и $a_{0\min}$ – заданные предельно допустимые значения неравномерности и ослабления; f_{1n} и f_{2n} – заданные номинальные граничные частоты полос, которые, как и текущая частота f, нормированы относительно частоты дискретизации. Предполагается, что параметры в (1) выражены в децибелах и максимум АЧХ нормирован к 0 дБ. Порядок фильтра N для конкретной аппроксимации оценивается по значениям f_{1n} , f_{2n} , Δa_{\max} и $a_{0\min}$.

Для фильтров Баттерворта $S(\mathbf{p}) =$ $=S(p_1)=S(\Delta a)$ или $S(p_2)=S(f_1)$ представляет собой отрезок прямой и полностью определяется одним исходным параметром - неравномерностью в полосе пропускания Δа или граничной частотой полосы пропускания f_1 . Эти параметры для фильтров Баттерворта являются зависимыми. На рисунке 1а показана S(f₁) при Δa_{\max} . Область фильтров Чебышева I $S(p) = S(p_1, p_2) =$ = $S(\Delta a, f_1)$ на рисунке 16 полностью определяется двумя уже пояснёнными исходными параметрами. Область фильтров Чебышева II $S(a_0, f_2)$ на рисунке 1в полностью определяется двумя исходными параметрами - ослаблением в полосе задерживания а0 и граничной частотой f_2 этой полосы. Отметим, что введённые выше области фильтров Баттерворта можно заменить на $S(a_0)$ или $S(f_2)$.

Область фильтров Золотарёва–Кауэра представляет собой трёхмерную фигуру $S(\Delta a, f_1, f_2)$ (см. рис. 1г) и полностью определяется уже пояснёнными выше тремя исходными параметрами. Она образована пересечениями

плоскости $\Delta a = \Delta a_{\text{max}}$ и трёх поверхностей с характерными точками B, D, E для первой, D, E, F для второй и B, D, F для третьей поверхности. Начало координат соответствует точке А, для которой $\Delta a = \Delta a_{\max}, f_1 = f_{1n}$ и $f_2 = f_{2n}$. Точки А, В, С, D лежат в плоскости $f_2 = f_{2n}$, а точки С, Е, F – в плоскости $f_1 = f_{1n}$. На рисунках 1б и 1в отмечены кривые, а на рисунке 1г – поверхности постоянства $\Delta \hat{a}$ и \hat{a}_0 . Для всех обсуждаемых аппроксимаций экстремальные значения Δa_{\min} , $\Delta a_{0\max}$, $\Delta \hat{a}_{\min}$, $\hat{a}_{0\max}$, $f_{1\min}$, $f_{1\max}, f_{2\min}, f_{2\max}$, указанные на рисунках 1а-1г, могут быть рассчитаны с помощью программы Extremal. Особо отметим, что знак ~ соответствия параметра номинальной полосе мы не используем в обозначениях предельно допустимых параметров в правых частях неравенств (1), поскольку всегда $\Delta \hat{a}_{\max} = \Delta a_{\max} \mathbf{H} \hat{a}_{0\min} = a_{0\min}$

Области S(p), с некоторыми изменениями в обозначениях, были ранее представлены в [1], где также даны их математические описания. Далее мы будем обозначать все рассмотренные области как *S*, опустив зависимость от вектора p или его компонентов.

Неравномерность ХГВЗ и нелинейность ФЧХ

Известно, что линейной ФЧХ соответствует постоянная ХГВЗ или нулевая неравномерность ХГВЗ. Однако не обязательно малая неравномерность ХГВЗ обусловлена малой нелинейностью ФЧХ и наоборот. Поэтому мы уделим внимание каждой из этих характеристик. Ниже, в определениях неравномерности ХГВЗ и нелинейности ФЧХ, зависимость их от р для простоты опустим.

Определения

Для оценки неравномерности ХГВЗ в номинальной полосе пропускания используем следующее определение:

$$\Delta \tau = \max_{f} \tau(f) - \min_{f} \tau(f), 0 \le f \le f_{1n}$$

где $\tau(f) - X\Gamma B3$. Значения $\tau(f)$ и $\Delta \tau$ оцениваются в отсчётах частоты дискретизации.

Для оценки нелинейности ФЧХ в номинальной полосе пропускания используем следующее определение:

 $\Delta \varphi = \max_{f} \left| \left(\varphi(f) - K360 f \right) \right|, 0 \le f \le \mathbf{f}_{1n}(2)$

где $\varphi(f) - \Phi \Psi X, K$ – константа, которая подбирается так, чтобы $\Delta \varphi$ была мини-

Рис. 1. Области допустимых исходных параметров фильтров а) Баттерворта, б) Чебышева I, в) Чебышева II, г) Золотарёва-Кауэра

мальной. Значения $\varphi(f)$ и $\Delta \varphi$ оцениваются в градусах.

Затруднительно найти аналитически точку в той или иной области *S* на рисунке 1, которая соответствует минимуму нелинейности ФЧХ и/или минимуму неравномерности ХГВЗ в полосе пропускания. Поэтому выполним прямое исследование всех областей на рисунке 1 для следующих значений параметров (1):

 $\Delta a_{\max} = 3 \text{ дБ}; a_{0\min} = 45 \text{ дБ};$

$$f_{1n} = 0,1 \text{ is } f_{2n} = 0,2. \tag{3}$$

Далее мы будем руководствоваться известными фактами в отношении параметров АЧХ БИХ-фильтров. Так, зависимости между параметрами имеют регулярный характер, и невозможно улучшить одни параметры без ухудшения других. Кроме того, следует помнить, что уменьшение неравномерности в номинальной полосе пропускания позволяет снизить $\Delta \tau$ и $\Delta \varphi$. Эти утверждения не связаны с конкретны-

Рис. 2. Зависимости неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) фильтров Баттерворта от граничной частоты *f*₁ при требованиях (3)

Рис.3. Зависимости неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) фильтров Чебышева I от граничной частоты f_1 при требованиях (3), N = 5, $\hat{a}_{0} = 45$; 47;...; 55 и 56,66 дБ

Рис. 4. Зависимости неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) фильтров Чебышева II от граничной частоты f_2 при требованиях (3), N = 5, $\Delta \hat{a}$ = 0,286; 0,4; 0,6;...; 1,8 и 3 дБ

ми требованиями к АЧХ. Поэтому мы полагаем, что выводы относительно той или иной аппроксимации при условиях (3) будут справедливы и в случае произвольных требований.

Фильтры Баттерворта

Для фильтров Баттерворта на рисунках 2а и 26 представлены зависимости $\Delta \tau$ и $\Delta \phi$ от исходного параметра f_1 области рисунка 1а для трёх значений N, включая минимальное N = 7. Видно, что с увеличением f_1 , неравномерность ХГВЗ и нелинейность ФЧХ монотонно уменьшаются, независимо от N. Заметим, что для фильтров Баттерворта увеличение f_1 эквивалентное уменьшению Δa приводит к уменьшению $\Delta \hat{a}$

Предельно возможному значению $f_1 = f_{1\max}$ (или $\Delta a = \Delta a_{\min}$) соответствуют

минимумы параметров $\Delta \tau$ и $\Delta \phi$. С увеличением N возрастает различие в значениях этих параметров для крайних точек S. Увеличивая N от 7 до 9 и предельно расширяя полосу пропускания f_1 , можно несколько уменьшить $\Delta \tau$ и $\Delta \phi$. Дальнейшее увеличение N малоэффективно.

Фильтры Чебышева І

Для фильтров Чебышева I зависимость Δt и $\Delta \phi$ от исходных параметров Δa и f_1 исследуем на ряде кривых $\hat{a}_0 =$ = const области *S* (см. рис. 16). По мере увеличения \hat{a}_0 происходит уменьшение *S* за счёт перемещения кривой BD к точке A до полного слияния с ней. В области *S* наименьшие Δa и $\Delta \hat{a}$ для конкретного значения f_1 имеют место на кривой BD. Поэтому, учитывая упомянутую ранее полезность уменьшения $\Delta \hat{a}$ и то, что для BD диапазон изменения f_1 является максимальным, можно предположить, что минимумы $\Delta \tau$ и $\Delta \phi$ находятся на этой кривой.

Для требований (3) минимальное значение N = 5. На рисунках 3а и 36 показаны зависимости $\Delta \tau$ и $\Delta \phi$ от f_1 для ряда значений \hat{a}_0 Минимумы $\Delta \tau$ и $\Delta \phi$ имеют место при разных f_1 и лежат на кривой BD, что подтверждает сделанное выше предположение.

С увеличением \hat{a}_0 минимум $\Delta \tau$, возрастая, перемещается на правый, а затем на левый край кривой $\hat{a}_0 = \text{const}$ (см. рис. 3а), а минимум ∆ φ – на правый край кривой \hat{a}_0 = const (см. рис. 3б). Видно, что не всегда уменьшение $\Delta \tau$ сопровождается уменьшением Дф, и наоборот. Представленные кривые на рисунках 3а и 3б имеют регулярный характер. Здесь точки А, В, С и D соответствуют аналогичным точкам области S на рисунке 16. Полученные минимальные значения Δτ и Δφ на рисунках За и 36 меньше значений в точках В, С, D и значительно меньше наихудших значений в точках А.

Таким образом, минимум Δt или $\Delta \phi$ фильтров Чебышева I можно найти, исследовав лишь кривую BD рисунка 16 на дискретном наборе частот f_1 . Такой однопараметрический поиск легко автоматизировать на компьютере.

Фильтры Чебышева II

Для фильтров Чебышева II зависимость $\Delta \tau$ и $\Delta \phi$ от исходных параметров a_0 и f_2 удобно исследовать на ряде кривых $\Delta \hat{a}$ = const области *S* рисунка 1в. С уменьшением $\Delta \hat{a}$ происходит уменьшение области *S* за счёт перемещения кривой EF к точке C до полного слияния с ней. Для этой точки $\Delta \hat{a} = \Delta \hat{a}_{min}$. Поэтому точка C является подозреваемой на минимум $\Delta \tau$ и $\Delta \phi$.

На рисунках 4а и 4б показаны зависимости $\Delta \tau$ и $\Delta \phi$ от f_2 для N = 5 и ряда значений $\Delta \hat{a}$ Минимумы $\Delta \tau$ и $\Delta \phi$ имеют место, как и предполагалось, в точке С, и с ростом $\Delta \hat{a}$ их значения увеличиваются и перемещаются на правый край кривых $\Delta \hat{a} =$ const на рисунках 4a и 46. Здесь точки A, C, E и F соответствуют аналогичным точкам S рисунка 1в. Согласно рисункам 4a и 46, полученный минимум $\Delta \tau$ более чем в ~1,5 раза, а минимум $\Delta \phi$ более чем в два раза меньше значений в точках A, E и F.

Таким образом, минимум Δτ или Δφ фильтров Чебышева II можно найти, выполнив расчёт для точки С области *S* на рисунке 1в, что совпадает с расчётом этих фильтров непосредственно по данным (3). Здесь можно отметить, что подстановка (3) в широко известную программу QEDesign-2000 даёт решение для точки Е на рисунке 1в, которой, согласно рисункам 4а и 46, соответствует фильтр с наибольшими значениями $\Delta \tau$ и $\Delta \phi$.

Фильтры Золотарёва-Кауэра

Фильтры Золотарёва-Кауэра полностью определяются исходными параметрами $\Delta a, f_1$ и f_2 области S (см. рис. 1г). Сечения этой области при f_2 = const по форме напоминают область фильтров Чебышева I на рисунке 16. Наибольшее из них соответствует $f_2 = f_{2n}$ и проходит через точки А, В, С и D. Поэтому предположим, что минимумы $\Delta \tau$ и $\Delta \phi$ находятся именно в этом сечении, более того, на кривой BD, как и в случае фильтров Чебышева І. Для подтверждения этого исследуем зависимость $\Delta \tau$ и $\Delta \phi$ от f_1 при $f_2 = f_{2n}$ на ряде кривых \hat{a}_0 = const области S. Кроме того, для полноты картины мы исследуем также сечение области на рисунке 1г, которое проходит через точки С, Е, F и является наибольшим из всех сечений $f_1 = f_{1n} =$ = const. Это сечение будет напоминать область S фильтров Чебышева II, если последнюю изобразить в координатах $\Delta a, f_2$, а не a_0, f_2 , как на рисунке 1 в.

Для требований (3) минимальное значение N = 4. На рисунке 5а и 56 показаны зависимости $\Delta \tau$ и $\Delta \phi$ от f_1 для ряда значений \hat{a}_0 . Минимумы $\Delta \tau$ и $\Delta \phi$ имеют место при разных f_1 и, как предполагалось, находятся на кривой BD. Семейства кривых на рисунках 5а и 5б очень схожи с семействами кривых на рисунках 3а и 36 для фильтров Чебышева I. Полученные минимумы $\Delta \tau$ и $\Delta \phi$ на рисунках 5а и 5б меньше значений в экстремальных точках B, C, D и значительно меньше наихудших значений в точке А. Интересно отметить, что с уменьшением Δa_{\max} в (3) минимумы $\Delta \tau$ и $\Delta \phi$ на рисунках 5а и 56 перемещаются по кривым BD вправо и в конечном счёте оказываются в точках В.

Рассмотрим теперь сечение $f_1 = f_{1n}$ области S на рисунке 1г. Зависимости $\Delta \tau u \Delta \phi$ от f_2 для ряда значений $\Delta \hat{a}$ представлены рисунками ба и бб. Видно, что минимумы $\Delta \tau$ и $\Delta \phi$ достигнуты в точках C и превышают минимумы на рисунках 5а и 5б. Семейства кривых на рисунке 6 схожи с показанными на рисунке 4 для фильтров Чебышева II.

Рис. 5. Зависимости неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) фильтров Золотарёва–Кауэра от граничной частоты f_1 при требованиях (3), N = 4, f_2 = 0,2, \hat{a}_0 = 45; 47;...; 61 и 62,16 дБ

Итак, мы полагаем, что минимум или $\Delta \tau$ или $\Delta \phi$ фильтров Золотарёва-Кауэра можно найти, исследовав кривую BD области S рисунка 1г на дискретном наборе граничных частот f_1 . Такой процесс однопараметрического поиска легко автоматизировать с помощью компьютера.

Предельный переход

Известно [10], что аналоговые фильтры Баттерворта и Чебышева (I и II) являются предельными вариантами фильтров Золотарёва–Кауэра. На рисунке 7 дана схема предельных переходов в случае цифровых фильтров, из

СПЕКТР

которой видно, что от фильтров Золотарёва–Кауэра при определённых условиях (указанных на схеме) возможен переход к трём другим фильтрам. Кроме того, от фильтров Чебышева I и II можно перейти к фильтрам Баттерворта. Такие переходы могут привести к нарушению условий (1), что устраняется увеличением *N*.

Допустим, что порядки фильтров Золотарёва–Кауэра и Чебышева (I и II) выбраны, исходя из условия (1), идентичными, причём области S фильтров Чебышева I и II являются точечными. Тогда, согласно схеме предельных переходов, на рисунке 1г точке F соот-

Text., 17 (195) 220 6493, 8 (960) 276 2841 Факс. (7 (812) 333 2755 (201.) Intelligectr-pobliciti - www.spectr-poblicit

МОНТАЖ ПЕЧАТНЫХ ПЛАТ

Концания СПЕКТР предлагаят услуги по истотопоснию и истотопоснию и истотопоснию сроян de истотопосние опланиих обрасцой. Выподнение заказор июбого объема.

Рис. 6. Зависимости неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) фильтров Золотарёва-Кауэра от граничной частоты f_2 при требованиях (3), N = 4, $f_1 = 0, 1$, $\Delta \hat{a} = 0,082$; 0,13; 0,2; 0,32; 0,5; 0,76; 1,15; 1,7; 2,46 и З дБ

Рис. 7. Схема предельных переходов для цифровых фильтров

ветствует $f_2 = 0,5$ и единственный фильтр Чебышева I, а точке D – равенство $f_1 = \Delta a = 0$ и единственный фильтр Чебышева II.

Предположим теперь, что для всех четырёх обсуждаемых фильтров порядки идентичны и условия (1) выполняются с некоторым запасом. Тогда область S на рисунке 1г примет форму, показанную на рисунке 8, где можно видеть место трёх других фильтров. Фильтры Чебышева I располагаются в плоскости $f_2 = 0,5$ в области, которая схожа по форме с изображенной на рисунке 16. Фильтры Баттерворта размещаются в точке $\Delta a = f_1 = 0$, а фильтры Чебышева II – на отрезке прямой, соединяющей две жирные точки на линии пересечения плоскостей $\Delta a = 0$ и

Рис. 8. Область допустимых исходных параметров фильтров Золотарёва-Кауэра

 $f_1 = 0$. Если обратиться к областям фильтров Чебышева I и II рисунков 16 и 1в, то здесь также можно указать место фильтров Баттерворта. На рисунке 16 – это точка $\Delta a_{\min} = f_{1\min} = 0$, а на рисунке 1в – это отрезок, который образован пересечением границ $\Delta \hat{a} =$ $= \Delta a_{\max}$ и $\hat{a}_0 = a_{0\min}$ с прямой линией $f_2 = f_{2\max} = 0.5$.

Предельный переход от фильтров Золотарёва–Кауэра к фильтрам Чебышева II и I можно дополнительно проиллюстрировать на конкретных зависимостях $\Delta \tau$ (или $\Delta \varphi$) от f_1 и $\Delta \tau$ (или $\Delta \varphi$) от f_2 соответственно. Ограничимся рассмотрением кривых $\Delta \tau$ от f_1 и $\Delta \tau$ от f_2 для требований (3).

На рисунке 9 представлены зависимости $\Delta \tau$ от f_1 фильтров Золотарё-

Рис. 9. Зависимости неравномерности ХГВЗ фильтров Золотарёва–Кауэра от граничной частоты f_1 при требованиях (3), N = 5, $f_2 = 0,2$, $\hat{a}_0 = 45$; 50;...; 75; 78 и 80,72 дБ

ва-Кауэра при N = 5, $f_2 = f_{2n}$ для ряда значений \hat{a}_0 Отличие этого семейства кривых от показанного на рисунке 5а заключается в том, что три нижние кривые начинаются при $f_1 = 0$. Выполнить точный расчёт фильтров Золотарёва-Кауэра для $f_1 = 0$ невозможно. Приближённый расчёт для трёх кривых можно выполнить для частоты f_1 , близкой к 0. Здесь имеет место предельный переход к фильтрам Чебышева II. Точные значения $\Delta \tau$ для трёх нижних кривых на частоте $f_1 = 0$ можно получить, рассчитав фильтры Чебышева II при N = 5, $f_2 = f_{2n}$, $a_0 = 45$, 50 и 55 дБ.

На рисунке 10 показаны зависимости $\Delta \tau$ от f_2 при $N = 5, f_1 = f_{1n}$ для ряда значений $\Delta \hat{a}$. Отличие этого семейства от показанного на рисунке ба заключается в том, что четыре верхние кривые заканчиваются при $f_2 = 0,5$. Расчёт фильтров Золотарёва–Кауэра для f_2 = = 0,5 даёт погрешность. Приближённый расчёт возможен для частоты f_2 , близкой к 0,5. Здесь имеет место предельный переход к фильтрам Чебышева I. Точные значения $\Delta \tau$ на частоте f_2 = = 0,5 для четырёх верхних кривых можно получить, рассчитав фильтры Чебышева I при $N = 5, f_1 = f_{1n}, \Delta a =$ = 0,352; 1,026; 1,852 и 3 дБ.

Сравнение фильтров

Выполним сравнение обсуждаемых классических фильтров, удовлетворяющих (1) при требованиях (3). На рисунках 11а и 116 представлены зависимости минимумов $\Delta \tau$ и $\Delta \phi$ от порядка фильтра *N* для четырёх рассматриваемых аппроксимаций. Видно, что в данном конкретном случае наилучшими являются фильтры Золотарёва–Кауэра, причём независимо от *N*. Затем следуют фильтры Чебышева II, Чебышева I и фильтр Баттерворта. В этом нет ничего удивительного, поскольку, как бы

Рис. 10. Зависимости неравномерности XГВЗ фильтров Золотарёва–Кауэра от граничной частоты f_2 при требованиях (3), N = 5, $f_1 = 0, 1$ $\Delta \hat{a} = 0,00116; 0,0365; 0,0116; 0,0365; 0,114;$ 0,352; 1,026; 1,852 и 3 дБ

ло отмечено выше, фильтры Чебышева и Баттерворта являются лишь специальными вариантами фильтров Золотарёва–Кауэра, были предложены давно и не с целью достижения минимальных Δτ и Δφ.

В таблицах 1-4 даны порядки фильтров N и найденные для них значения минимумов Δτ и Δφ, отображённые на рисунках 11а и 11б. Здесь же указаны максимумы ХГВЗ в номинальной полосе пропускания τ_{max} и значения параметра К, фигурирующего в (2). Кроме того, представлены исходные параметры (f_1 или Δa и f_1 или a_0 и f_2 , в зависимости от аппроксимации), по которым получены все эти результаты. В случае фильтров Чебышева I (см. таблицу 2) и Золотарёва-Кауэра (см. таблицу 4) результаты для каждого N приведены в двух строках: первая соответствует минимуму неравномерности ХГВЗ, вторая - минимуму нелинейности ФЧХ.

Напомним, что для фильтров Баттерворта (см. таблицу 1) или Чебышева II (см. таблицу 3) значения минимумов Δt и $\Delta \phi$ достигаются при одних и тех же исходных параметрах. Если обратиться к зависимостям на рисунках 5а и 56 для фильтров Золотарёва–Кауэра, то можно увидеть, что существует диапазон значений f_1 , для которых Δt и $\Delta \phi$ оказываются меньше, чем минимальные значения, полученные для фильтров Чебышева (I и II) и Баттерворта.

Дополнительные расчёты показывают, что расположение кривых на рисунках 11а и 116 может быть нарушено. Так, для достаточно широкой номинальной полосы пропускания фильтры Чебышева I могут иметь меньшие значения $\Delta \tau$ и $\Delta \varphi$, чем фильтры Чебышева II.

Небольшое отступление

Представим себе, что область S фильтра Золотарёва-Кауэра соответствует точке. Понятно, что никакие другие значения коэффициентов передаточной функции этого фильтра не позволят нам улучшить параметры ФЧХ или ХГВЗ без нарушения требований к АЧХ. В этой ситуации фильтры Золотарёва-Кауэра обладают не только оптимальными АЧХ, что им свойственно, но и оптимальными ХГВЗ и ФЧХ, которые в конкретных случаях могут оказаться совершенно неприемлемыми. С некоторыми оговорками подобные рассуждения можно отнести и к трём другим обсуждаемым здесь классическим фильтрам, АЧХ которых являются в определённом смысле

Рис. 11. Зависимости минимумов неравномерности ХГВЗ (а) и нелинейности ФЧХ (б) от порядка различных фильтров при требованиях (3)

оптимальными. Получить лучшее соотношение между параметрами рассматриваемых характеристик можно, увеличив порядок собственно фильтра и/или добавив корректор. В этой связи возникает проблема выбора порядков фильтра и корректора, а также исходных параметров. В конце статьи мы затронем задачу выравнивания ХГВЗ фильтров Золотарёва–Кауэра.

Квантование коэффициентов

Метод вариации исходных параметров (ВИП) успешно применялся для

получения допустимых АЧХ некоторых структур фильтров с квантованными коэффициентами (см., например, [11]). Суть метода заключается в нахождении такой точки в области S, для которой последующее квантование (округление) коэффициентов с шагом $q = 2^{-M}$ приводит к оптимальному решению. Здесь M – максимальная длина слова мантиссы коэффициентов. Ниже на двух примерах мы покажем, какие результаты можно достичь, решая эту задачу при дополнительном требовании к ХГВЗ, а именно при $\Delta \tau \rightarrow$ тіп. Ограничимся рассмотрением

Таблица 1. Параметры ХГВЗ и ФЧХ фильтра Баттерворта с требованиями (3) и соответствующая исходная *f*₁

N	Δτ	T _{max}	∆φ°	К	<i>t</i> ₁
7	6,02	12,50	15,36	-7,5436	0,10617

Таблица 2. Параметры ХГВЗ и ФЧХ фильтров Чебышева I с требованиями (3) и соответствующие исходные *∆а, f*₁

ľ	N	Δτ	T _{max}	∆φ°	К	∆ <i>а</i> , дБ	f ₁
5		3,90 4,69	8,67 9,64	12,76 12,64	6,2055 6,2762	1,492 1,233	0,11565 0,11365
6		3,63 5,02	9,34 10,06	9,04 8,33	6,6040 6,4492	0,249 1,058	0,1201 0,1320
7		2,27 2,77	7,97 8,88	7,95 7,45	-6,6228 -6,7318	0,842 0,311	0,1448 0,13775

Таблица 3. Параметры ХГВЗ и ФЧХ фильтров Чебышева II с требованиями (3) и соответствующие
исходные a ₀ , f ₂

N	Δτ	τ _{max}	∆φ°	K	<i>а</i> ₀ , дБ	f ₂
5	2,99	6,25	7,34	-3,7933		
6	1,93	4,97	4,95	-3,4140	45	0,2
7	1,53	4,44	4,07	-3,2246		

Таблица 4. Параметры ХГВЗ и ФЧХ фильтров Золотарёва–Кауэра с требованиями (3) и соответствующие исходные *Да*, *f*₁

Ν	Δτ	Tmax	∆φ°	K	∆ <i>а</i> , дБ	<i>f</i> ₁
4	1,80	4,45	7,73	-3,5310	1,147	0,13075
	2,69	5,71	6,45	-3,7176	0,467	0,1195
5	1,49	3,78	5,17	-3,0023	2,384	0,17025
	1,74	4,41	2,21	-3,0285	1,275	0,1641
6	1,21	3,86	3,87	-3,0147	0,243	0,1712
	1,26	4,03	3,53	-3,0680	0,066	0,1623
7	0,91	3,28	3,21	-2,8152	1,72	0,1918
	1,02	3,61	1,28	-2,8070	0,951	0,18965

каскадных фильтров Золотарёва–Кауэра на звеньях не выше второго порядка и прямой формы. При этом масштабирование в фильтрах проигнорируем. Используем трёхпараметрический алгоритм ВИП [11], с помощью которого при фиксированном значении *M* осуществим поиск всех решений с допустимыми АЧХ и выбор решения с минимальным значением ∆т.

В первом примере мы удовлетворим (1) при требованиях (3) и $\Delta \tau \rightarrow \min для$ фильтра с квантованными коэффициентами. Результаты представлены в таблице 5 для N = 4 (при M = 4 и 5) и N = = 5 (при M = 3). Здесь указаны полученные $\Delta \tau$ и соответствующие им исходные параметры. Видно, что квантование коэффициентов ($M \neq \infty$) не приводит к ухудшению решений с непрерывными коэффициентами (М = = ∞). Наблюдается даже заметное уменьшение $\Delta \tau$ при M = 5 и особенно при М = 3. Однако для других требований решение с квантованными коэффициентами может оказаться хуже, чем с непрерывными.

Второй пример, для которого N = 4, $M = 7, f_{1n} = 0,2 \text{ и} f_{2n} = 0,3$, возьмём из [12]. Авторы этой работы использовали сложную многокритериальную целевую функцию для получения фильтра с квантованными коэффициентами, который должен обладать приемлемыми АЧХ и ХГВЗ. Дополнительные ограничения накладываются на максимальный полюсный радиус r. Решение задачи было найдено методом имитации процесса отжига (ИПО), приводящим к результатам, близким к глобальному оптимуму. В таблице 6 в колонке ИПО представлены параметры полученного фильтра [12]. Кроме того, там приведены параметры, соответствующие простому округлению (ПО) коэффициентов фильтра Золотарёва-Кауэра, а также найденные нами с помощью упомянутого алгоритма ВИП. Видно, что ПО уступает методу ИПО по $\Delta \tau$ и 1 – r. В то же время, алгоритм ВИП при *M* = 5, а не *M* = 7, как в [12], приводит к результатам, которые несколько лучше достигнутых с помощью ИПО. При М = 4 алгоритм ВИП проигрывает методу ИПО лишь по достигнутому максимуму 1 - г. Два найденных с помощью ВИП решения можно воспроизвести, рассчитав фильтры Золотарёва-Кауэра по следующим двум наборам исходных параметров: $\Delta a = 0,2133$ дБ, $f_1 = 0,2328, f_2 = 0,2968$ и $\Delta a = 0,00649 \ \text{дБ}, f_1 = 0,1822, f_1 = 0,3006.$ Далее коэффициенты фильтров округляются до M = 4 для первого и M = 5 для

Таблица 5. Результаты синтеза двух фильтров с квантованными коэффициентами

	N	М	Δτ	<i>∆а</i> , дБ	f ₁	f ₂
	~~	1,80	1,147	0,13075	0,2	
	4	4	1,80	1,168	0,122	0,205
		5	1,19	0,898	0,127	0,2
	E	~~	1,49	2,384	0,17025	0,2
b	3	0,63	0,224	0,1321	0,2135	

Таблица 6. Результаты синтеза фильтра четвёртого порядка с квантованными коэффициентами

	Алгоритм					
Параметры фильтра	ИПО [12]	ΠΟ [12]	BI	П		
	М	=7	M = 4	M = 5		
$\Delta \widehat{a}$, дБ	0,26	0,38	0,24	0,19		
\widehat{a}_{0} , дБ	31,57	41,80	32,44	31,78		
Δτ	2,444	6,697	1,826	2,394		
1 – <i>r</i>	0,209	0,153	0,134	0,209		

Таблица 7. Сравнение двух подходов к проектированию фильтров

Вариант	N ₁	N ₂	Δτ	τ _{max}	<i>∆а</i> , дБ	f ₁	f ₂
	2	16	15,3	22,2	-		
1	6	6	34,6	40,5	1	0,1	0,15
	0	0	8,1	13.0	0,687	0,113	0,15
	2	8	7,55	11,0	-		
2	5	5	13,1	15,6	1	0,2	0,3
			4,2	6,3	1	0,21926	0,3
3	2	7	~8	~10	-		
	5	5 5	20,32	22,1	0,4	0,2	0,2203
			3,8	5,3	0,4	0,2256	0,2465
			6,38	7,9	0,00369	0,18157	0,2465

второго набора исходных. Передаточная функция для второго варианта имеет вид:

$$H(z) = \frac{1+1,6875z^{-1}+z^{-2}}{1-0,15625z^{-1}+0,09375z^{-2}} \times \frac{1+0,75z^{-1}+z^{-2}}{1-0,15625z^{-1}+0,625z^{-2}}.$$

Путём расчёта можно убедиться, что этой передаточной функции H(z)действительно отвечают параметры таблицы 6 для случая M = 5.

Сравнение с другими аппроксимациями

Далее покажем, что, используя фильтры Золотарёва–Кауэра с оптимальными исходными параметрами, можно улучшить результаты, ранее полученные с помощью двух оригинальных аппроксимаций. Первая из них соответствует фильтрам с неравным числом полюсов и нулей [13, 14], а вторая – фильтрам на основе параллельного соединения двух фазовых цепей с приближённо линейной ФЧХ [15].

Аппроксимации с неравным числом полюсов и нулей

Порядки знаменателя и числителя передаточной функции классических фильтров идентичны. В работах [13, 14] предложены численные аппроксимации с неравными порядками или – иначе – с неравным числом полюсов и нулей. На примерах, в частности, в [13], показано, что если порядок знаменателя равен $N_1 = 2$, а порядок числителя N_2 выбирается, исходя из удовлетворения (1), то такой фильтр обладает хорошими параметрами XГВЗ. Рассмотрим три варианта значений параметров в (1):

- [13]: $\Delta a_{\text{max}} = 1 \text{дБ}, a_{0\text{min}} = 60 \text{ дБ}, f_{1n} = 0, 1$ и $f_{2n} = 0, 15;$
- [13]: ∆а_{max} = 1дБ, а_{0min} = 60 дБ, f_{1n} = 0,2 и f_{2n} = 0,3;
- [14]: $\Delta a_{\max} = 0.4 \text{ дБ}, a_{0\min} = 30 \text{ дБ}, f_{1n} = 0.2 \text{ и} f_{2n} = 0.2465.$

Результаты [13, 14] для этих данных представлены в таблице 7. В фильтрах [13] числитель передаточной функции представляет собой зеркально-симметричный полином и поэтому обладает линейной ФЧХ. В фильтре [14] числитель содержит шесть комплексных нулей на единичной окружности и один действительный нуль внутри этой окружности. В таблице 7 также приведены результаты для фильтров Золотарёва-Кауэра ($N_1 = N_2$) и указаны исходные параметры, по которым они получены. Видно, что если расчёт этих фильтров выполнен без оптимизации исходных параметров [13] или с предельно уменьшенной f_2 [14] (первые строки в случаях $N_1 = N_2$), то они действительно проигрывают фильтрам с $N_1 \neq N_2$ по достигнутым минимумам Дт. Если же расчёт проведён с учётом оптимизации исходных параметров (вторая строка в случаях $N_1 = N_2$), то фильтры Золотарёва-Кауэра оказываются предпочтительнее предложенных в [13, 14] как по $\Delta \tau$, так и по τ_{max} (иногда желательно иметь $\tau_{max} \rightarrow min$).

Авторы работы [14] отмечают, что их подход (при $N1 \neq N2$) приводит к решению с полюсным радиусом r = 0,888. В то же время, рассчитанный в [14] фильтр Золотарёва-Кауэра (таблица 7, вариант 3, первая строка в случаях $_1 = N_2$) имеет максимальное значение r = 0,953. Заметим, что для найденного нами оптимизированного фильтра (первая строка в случаях $N_1 = N_2$) r == 0,951. Для варианта 3 в таблице 7 при $N_1 = N_2$ дана третья строка результатов, которым соответствует r = 0,880. Указанное здесь значение $\Delta \tau$ уступает оптимальному (вторая строка), но всё же меньше достигнутого в [14].

Аппроксимация с приближённо линейной ФЧХ

Частным случаем фильтров на основе параллельного соединения двух фазовых цепей являются фильтры с чистой задержкой в качестве одной из этих цепей. Проектирование таких фильтров с требованиями (1) к АЧХ сводится к получению приближённо линейной ФЧХ (ПЛФЧХ) для другой фазовой цепи. Это обеспечивает ПЛФЧХ всего фильтра. Аналитических соотношений для такого проектирования, в отличие от общего случая, когда каждая из двух фазовых цепей не является чистой задержкой, не существует, поэтому используют численные алгоритмы. Интересно сравнить фильтры с ПЛФЧХ [15] и оптимизированные фильтры Золотарёва-Кауэра на основе параллельного соединения двух фазовых цепей.

В таблице 8 представлены результаты, полученные в [15], при следующих параметрах в (1): $\Delta a_{\max} = 0.1$ дБ, $a_{0\min} =$ = 40 дБ, $f_{1n} = 0.05$, а $f_{2n} = 0.075$ и 0.1. Для каждого значения f_{2n} показаны два альтернативных результата, найденных нами и относящихся к фильтрам Золотарёва–Кауэра. Кроме того, указаны исходные параметры, по которым они получены. Здесь $A_L(z)$ – фазовая цепь порядка *L*. Видно, что фильтры [15] уступают фильтрам Золотарёва–Кауэра как по сложности передаточной функции H(z), так и по соответствующим значениям $\Delta \tau$ и τ_{max} . Следует, однако, заметить, что для двух других вариантов требований [15], которые будут рассмотрены ниже, фильтры Золотарёва–Кауэра уступают фильтрам [15].

Выравнивание ХГВЗ

На сегодняшний день не существует аналитического решения задачи одновременного получения желаемых АЧХ и ХГВЗ (или ФЧХ) для БИХ-фильтров. Поэтому для решения этой сложной проблемы были предложены многочисленные алгоритмы оптимизации (см. [16, 17] и ссылки в этих работах). Часто задачу упрощают, используя выравнивание ФЧХ или ХГВЗ с помощью фазового корректора (ФК), включенного последовательно с фильтром (см. ссылки в [16, 17]).

Синтез ФК также выполняется численными методами, но сфокусирован только на параметрах одной характеристики – ФЧХ или ХГВЗ, поскольку желаемая АЧХ может быть определена аналитически. При этом часто оказывается, что общий прядок (фильтр + + ФК) достаточно высок, что усложняет реализацию фильтра в целом.

Здесь мы покажем, что порядок ФК может быть приемлемым и что результаты выравнивания сильно зависят от исходных параметров, по которым рассчитаны классические фильтры, а также от порядков фильтра и ФК. Выравнивание ХГВЗ для всех рассмотренных ниже фильтров выполним с применением программы Piclor [18].

ПРИМЕНЕНИЕ ПРОСТОГО КОРРЕКТОРА

Обратимся к двум вышеупомянутым вариантам требований к АЧХ, для которых оптимизированные фильтры Золотарёва–Кауэра имеют значения Δt бо́льшие, чем фильтры с ПЛФЧХ [15]. Для этих вариантов $\Delta a_{\max} = 1.e-3$ дБ и $\Delta a_{\max} = 1.e-5$ дБ, а три других параметра – $a_{0\min} = 40$ дБ, $f_{1n} = 0.05$ и $f_{2n} = 0.1$ – идентичны.

В таблице 9 приведены результаты [15] для фильтров с ПЛФЧХ, а также полученные нами для фильтров Золотарёва–Кауэра без и с ФК второго порядка. Расчёты фильтров выполнены для точки С области на рисунке 1г. При этом исходные $f_1 = f_{1n}$, $f_2 = f_{2n}$, а $\Delta a =$ = 0,00097 дБ для первого и $\Delta a = 3.e-7$ дБ для второго варианта требований. Полученные нами $\Delta \tau$ несколько больше минимальных значений, которые в данных случаях соответствуют точке В области на рисунке 1г.

Из таблицы 9 следует, что использование простого ФК позволяет существенно уменьшить значения $\Delta \tau$, достигнутые в [15]. Кроме того, такой подход даёт более простые реализации передаточных функций H(z). Заметим также, что представленные фильтры с ФК в одном случае имеют большее, а в другом – меньшее значение τ_{max} , чем фильтры с ПЛФЧХ. Найденные коэффициенты передаточной функции ФК прямой формы $A'_2(z)$ равны $c_1 = -1,52359375, c_2 = 0,59642167$ для первого и $c_1 = -1,42842773, c_2 = 0,52654699$ для второго варианта требований.

Таблица 8. Сравнение фильтро	с ПЛФЧХ и фильтров	Золотарёва-Кауэра
------------------------------	--------------------	-------------------

f _{2n}	Фильтр	H(z)	Δτ	T _{max}	<i>∆а</i> , дБ	f ₁
0,075	ПЛФЧХ	$A_{16}(z) + z^{-15}$	10,2	24,4	-	
	ЗК	$A_3(z) + A_4(z)$	6,34	13,7	0,1	0,06813
			8,54	16,1	5,08e-5	0,05
0,1	ПЛФЧХ	A ₈ (z) + z ⁻⁷	4,78	11,0	-	
	ЗК	$A_2(z) + A_3(z)$	2,87	8,8	0,1	0,07172
			3,83	9,9	0,00097	0,05

Таблица 9. Сравнение	фильтров с ПЛФЧХ	и фильтров Золот	арёва-Кауэра с и без ФК

∆ <i>а</i> _{max} , дБ	Фильтр	H(z)	Δτ	Tmax
1,e-3	ПЛФЧХ	$A_{13}(z) + z^{-12}$	1,18	13,0
	3K(N = 5)	$A_2(z) + A_3(z)$	3,83	9,9
	3K + ΦK	$\left[A_{2}(z)+A_{3}(z)\right]A_{2}(z)$	0,390	17,5
1,e-5	ПЛФЧХ	$A_{17}(z) + z^{-16}$	0,549	16,5
	3K (N = 7)	$A_3(z) + A_4(z)$	2,56	8,3
	3K + ΦK	$[A_3(z) + A_4(z)]A_2(z)$	0,129	15,4

Рис. 12. ХГВЗ (а) и характеристика отклонения ФЧХ от прямой линии (б) для фильтра Золотарёва-Кауэра пятого порядка с ФК седьмого порядка

ИСХОДНЫЕ ПАРАМЕТРЫ И ПОРЯДКИ ФИЛЬТРА И КОРРЕКТОРА

Выполним выравнивание ХГВЗ для фильтра Золотарёва–Кауэра, АЧХ которого удовлетворяет (1) при $\Delta a_{\text{max}} = 0,376 \text{ дБ}, a_{0\text{min}} = 53,5 \text{ дБ}, f_{1n} = 0,025 \text{ и} f_{2n} = 0,05.$

В таблице 10 представлены результаты для N = 5 (минимальный порядок) и N = 6. Выравнивание проведено для точек A, B, C и D (см. рис. 1г) с помощью ФК пятого и шестого порядков. Результирующий порядок каждого из фильтров равен 10 и 12, что требует при реализации 12 и 15 умножителей соответственно, с учётом каскадной реализации фильтров на звеньях не выше второго порядка с двумя умножителями на звено. Для каждой точки представлены полученные параметры XГВЗ и ФЧХ до (верхняя строка) и после (нижняя строка) выравнивания, а также исходные параметры $\Delta a, f_1$. Напомним, что для всех рассматриваемых точек $f_2 = f_{2n}$. Наилучшее решение в смысле минимума $\Delta \tau$, без ФК получено в точке В для каждого N, а с ФК – в точке В при N = 5 и в точке D при N = 6.

Мы наблюдаем сильное различие степени выравнивания XIB3 для точки A в сравнении с результатами для трёх других точек. Максимальное отличие по $\Delta \tau$ достигает более 9,25/0,224 ≈ 41 раза при N = 5 и более 21,35/0,0,018 ≈ ≈ 1100 раз при N = 6. Для улучшения результатов выравнивания в точке A требуется увеличить порядок ФК. Однако выравнивание при N = 5 с помощью ФК одиннадцатого порядка для точки,

	N	Точка	Δτ	Tmax	∆φ°	K	<i>∆а</i> , дБ	<i>f</i> ₁
	5	A	49,9	71,8	20,8	-27,46	0,376	0,025
			9,3	113,3	2,5	-108,54		
		В	10,3	26,9	8,3	-18,78	0,376	0,0311357
			0,224	72,2	0,075	-72,09		
		С	19,3	36,8	10,3	-20,31	0,0270627	0,025
			0,643	86,3	0,177	-86,02		
		D	22,9	40,6	12,3	-21,09	0,006463	0,0220378
			0,421	87,9	0,123	-87,70		
	6	A	77,8	104,3	28,7	-35,19	0,376	0,025
			21,4	151,0	6,4	-137,4		
		В	7,3	21,7	4,7	-16,64	0,376	0,0382449
			0,119	83,6	0,047	-83,50		
		C	11,2	27,6	6,7	-18,46	0,0004809	0,025
			0,093	87,5	0,027	-87,44		
		D	16,7	33,8	9,9	-19,91	6,26e–11	0,0071248
			0,018	90,3	0,0045	-90,33		

Таблица 10. Параметры ХГВЗ и ФЧХ фильтров Золотарёва-Кауэра с и без ФК

Таблица 11. Параметры ХГВЗ и ФЧХ фильтров, полученные в различных публикациях

Источник	Δτ	ፕ _{max}	Δφ°	К	Порядок	×
[20]	1,32	16,6	2,22	-15,95	4 + 8 = 12	6 + 8 = 14
Данная статья	0,052	12,3	0,154	-12,30	5 + 7 = 12	7 + 7 = 14
	0,094	11,0	0,252	-10,94	5 + 6 = 11	7 + 6 = 13
[21]	0,16	15,2	0,262	-15,1	12	24
[22]	0,036	14,0	0,063	-14,0	12	22
[17]	0,031	14,0	0,042	-14,0	12	24

близкой к A, дает лишь $\Delta \tau = 1,57$ [19] против достигнутого нами $\Delta \tau = 0,246$ в точке В при N = 5 и ФК пятого порядка. Таким образом, выполненное в [19] на ряде примеров сравнение с методом выравнивания ХГВЗ требует уточнения.

Следует отметить, что предложенный численный метод проектирования фильтров с равноволновыми АЧХ и ХГВЗ [19] приводит к превосходным решениям с экстремально низкими $\Delta \tau$. В частности, для обсуждаемого примера авторы [19] получили Δτ = 0,0003, $\tau_{\text{max}} = 63,5, \Delta \hat{a} = 0,376$ дБ и $\hat{a}_0 = 53,5$ дБ. Это решение соответствует последовательному соединению БИХ-фильтра двенадцатого порядка без нулей передачи и КИХ-фильтра с линейной ФЧХ восьмого порядка. Сложность всего фильтра - 17 умножителей. Заметим, что полученное в [19] τ_{max} меньше, чем любое значение, представленное в таблице 10 для варианта с ФК.

Проведём выравнивание ХГВЗ для ещё одного фильтра, АЧХ которого удовлетворяет (1) при $\Delta a_{\text{max}} = 0.5$ дБ, $a_{0\text{min}} = 32$ дБ, $f_{1n} = 0.25$, $f_{2n} = 0.3$. В этом случае область S на рисунке 1г для фильтра Золотарёва–Кауэра при N = 4является почти точкой, и улучшить ХГВЗ можно, лишь увеличив порядок фильтра и/или добавив ФК.

В таблице 11 представлены результаты выравнивания ХГВЗ фильтра Золотарёва-Кауэра при $N = 4 c \Phi K$ восьмого порядка [20] и полученные нами при N = 5 с ФК седьмого и шестого порядков. Оба наших решения соответствуют точке В ($\Delta a = \Delta a_{\text{max}}, f_1 = f_{1\text{max}} =$ = 0,2780666, $f_2 = f_{2n}$) области S на рисунке 1г. Для точек С и D результаты выравнивания оказались хуже. Кроме параметров ХГВЗ и ФЧХ, в таблице 11 указаны порядки составных фильтров (собственно фильтров и ФК), а также число содержащихся в них умножителей (знак ×) в случае их каскадной реализации. По первым трём строкам таблицы видно, что результаты [20] существенно улучшены, причём без усложнения всего фильтра. Найденные коэффициенты звеньев ФК седьмого порядка c_1, c_2 равны:

- -0,70055859, 0,35208008 звено 1;
- -0,26747656, 0,37754597 звено 2;
- -1,03277734, 0,33848115 звено 3;
- -0,57729687, 0 звено 4.

Последовательное соединение фильтра Золотарёва–Кауэра и этого ФК даёт ХГВЗ на рисунке 12а и характеристику отклонения ФЧХ от прямой линии (ф(f) – K360f) на рисунке 12б. Эти характеристики подтверждают параметры таблицы 11 для решения с ФК седьмого порядка.

В трёх нижних строках таблицы 11 представлены также результаты решения задачи одновременного получения желаемых АЧХ и ХГВЗ (ФЧХ) [17, 21, 22] для фильтра двенадцатого порядка с равным числом нулей и полюсов. Значения $\Delta \tau$, $\Delta \phi$ для найденных нами решений находятся межу достигнутыми в [21] и [17, 22]. Здесь мы получили наименьшие τ_{max} . По числу умножителей фильтры [17, 21, 22] значительно проигрывают фильтрам Золотарёва–Кауэра с коррекцией ХГВЗ.

Таким образом, на примерах мы убедились, что выбор исходных параметров АЧХ, порядков фильтра и корректора существенно влияют на результаты выравнивания ХГВЗ.

Заключение

Неравномерность ХГВЗ и/или нелинейность ФЧХ в номинальной полосе пропускания классических цифровых БИХ-фильтров могут быть минимизированы с помощью выбора исходных параметров АЧХ в пределах определенной области допуска. Мы ограничились рассмотрением только фильтров нижних частот с АЧХ Баттерворта, Чебышева (I и II) и Золотарёва–Кауэра.

Для фильтров Баттерворта и Чебышева II максимальное уменьшение неравномерности АЧХ в полосе пропускания приводит к минимуму неравномерности ХГВЗ и нелинейности ФЧХ. При этом для фильтров Чебышева II это достигается прямым расчётом по исходным предельно допустимым параметрам.

Для фильтров Чебышева I и Золотарёва-Кауэра требуется найти два исходных параметра, а именно, неравномерность АЧХ в полосе пропускания и граничную частоту этой полосы. Процедура сводится к простому однопараметрическому поиску. Для этих фильтров минимум неравномерности ХГВЗ не обязательно соответствует минимуму нелинейности ФЧХ, и наоборот.

Наилучшие результаты по параметрам ХГВЗ и ФЧХ даёт аппроксимация Золотарёва–Кауэра, затем Чебышева II или Чебышева I (в зависимости от ширины номинальной полосы пропускания) и лишь потом – аппроксимация Баттерворта. При этом подразумевается, что все фильтры удовлетворяют заданным требованиям к АЧХ и имеют идентичные порядки.

На конкретных примерах проиллюстрировано, что оптимизированные фильтры Золотарёва–Кауэра не уступают по минимально достижимой неравномерности ХГВЗ ранее предложенным в литературе фильтрам с неравным числом полюсов и нулей.

Для решения задачи минимизации неравномерности ХГВЗ фильтра с квантованными коэффициентами можно применить метод вариации исходных параметров. Полученные результаты для конкретных примеров существенно лучше решений, найденных методом простого округления и одним из эффективных алгоритмом вариации коэффициентов на дискретном множестве их значений.

Степень выравнивания ХГВЗ с помощью фазовых корректоров может очень сильно зависеть от исходных параметров АЧХ фильтров. Так, разброс результатов выравнивания для конкретного фильтра Золотарёва-Кауэра достигает более 1100 раз. Степень выравнивания ХГВЗ существенно зависит также от порядков фильтра и корректора. Поэтому задачу выравнивания ХГВЗ желательно решать комплексно, с учётом всех факторов влияния. Представляется, что сравнения метода одновременной аппроксимации АЧХ и ХГВЗ с методом выравнивания ХГВЗ классических фильтров, выполненные в ранних публикациях, требуют уточнений.

Литература

- Мингазин А.Т. Начальные приближения для синтеза цифровых фильтров с минимальной длиной слова коэффициентов.
 Электронная техника. 1983. Сер. 10. № 6. С. 3–8.
- 2. Савченко С М., Смирнов Э.Е. Улучшение частотных характеристик эллиптических фильтров. Изв. вузов СССР. Сер. Радиоэлектроника. 1976. Т. XIX. № 6. С. 113–116.
- 3. *Мингазин А.Т.* Способ улучшения характеристик затухания фильтров. Радиотехника. 1985. № 9. С. 89–91.
- 4. *Vlcek M., Unbehauen R.* Degree, ripple and transition width of elliptic filters. IEEE Trans. CAS-36. 1989. № 3. PP. 469–472/
- 5. *Мингазин А.Т.* Экстремальные параметры аналоговых и цифровых фильтров. Электросвязь. 1999. № 1. С. 22–23.
- Tosic D.V., Lutovac M. D., Evans B.L. Advanced digital IIR filter design. ECCTD. 1999. PP. 1323–1326.

- Corral CA., Lindquist C.S. Design for optimum classical filters. Proc. IEE Circuit Devices Syst. 2002. Vol. 149. № 5/6. PP. 291–301.
- 8. Алёшин Д.В., Мингазин А.Т. Программа для расчёта экстремальных параметров цифровых и аналоговых фильтров и ее применение. Цифровая обработка сигналов. 2006. № 1. С. 45–49.
- Dimopoulos H.G. Optimal use of some classical approximations in filter design. IEEE Trans. CAS-II. 2007. Vol. 54. № 9. PP. 780–784.
- 10. Мошитц Г., Хорн П. Проектирование активных фильтров. Мир, 1984.
- 11.*Мингазин А.Т*. Синтез цифровых фильтров для высокоскоростных систем на кристалле. Цифровая обработка сигналов. 2004. № 2. С. 14–23.
- 12.Radecki J., Konrad J., Dubois E. Design of finite wordlength IIR filters with prescribed magnitude, group delay and stability properties using simulated annealing. ICASSP. 1991. PP. 1637–1640.
- 13. Jackson L.B. An improved Martinez/Parks algorithm for IIR design with unequal numbers of poles and zeros. IEEE Trans. SP-42. 1994. № 5. PP. 1234–1238.
- 14. *Quelhas M.F., Petraglia A*. Digital filter design optimization using partial cost functions. ISCAS. 2009. PP. 285–288.
- 15.Jobansson H., Wanbammar L. Design of linear-phase lattice wave digital filters. Report LiTH-ISY-R1930. 1997.
- 16. Guindon D., Shpak DJ., Antoniou A. Design methodology for nearly linear-phase recursive digital filters by constrained optimizaion. IEEE Trans. CAS-I. 2010. V. 57. № 7. PP. 1719–1731.
- 17.*Lai X., Lin Z.* Minimax phase error design of IIR digital filters with prescribed magnitude and phase responses. IEEE Trans. SP-60. 2012. № 2. PP. 980–986.
- 18. Зорич А.А., Мингазин А.Т. Программа интерактивного управления дислокацией корней полиномов числителя и знаменателя передаточных функций цифровых фильтров. Электросвязь. 1995. № 5. С. 36–37.
- 19.*Saramaki T., Neuvo Y.* Digital filters equiripple magnitude and group delay. IEEE Trans. ASSP-32. 1984. № 6. PP. 1194–1200.
- 20.Deczky A.G. Equiripple and minimax (Chebyshev) approximation for recursive digital filters. IEEE Trans. ASSP-22. 1974. № 2. PP. 98–111.
- 21.*Inukai T.* A unified approach to optimal recursive digital filter design. IEEE Trans. CAS-27. 1980. № 7. PP. 646–649.
- 22.Sullivan J.L., Adams J.W. PCLS IIR digital filters with simultaneous frequency response magnitude and group delay specifications. IEEE Trans. SP-46. 1998. № 11. PP. 2853–2861.