
DSPA, 2004, V.1, pp. 42-44. 
 
DESIGN    OF    MULTIPLIERLESS    HALF-BAND    DIGITAL  FILTERS    BASED   ON   ALLPASS  
NETWORKS 

Mingazin A. 
RADIS Ltd 

  а/я 20, 124460, Moscow, Zelenograd, Russia, 
 Tel/Fax (095)535-02-70, 532-06-63 e-mail: alexmin@orc.ru 

 
Abstract. A simplified approach of  variation of initial parameters can be applied for the design of  

multiplierless half-band digital filters based on parallel connection of two cascaded allpass networks.  An 
example of  9-th order filter design is discussed. A catalog of 15 Zolotarev-Cauer 3-rd order half-band fil-
ters using no more than two adders instead of multipliers is presented.  

 
1. Introduction. Half-band digital filters are widely used at interpolation and decimation in many digi-

tal signal processing systems. In particular they can be used as a basis for narrow-band filters, subband codecs, 
transmultiplexers and other devices. The multiplierless half-band digital filters based on parallel connection of 
two allpass networks using cascaded 2-nd order sections are very economic for an implementation on custom or 
semi-custom VLSI. In such filters half of coefficients  are equal to zero, and each nonzero coefficient is a com-
bination of numbers equal to powers of  two. In this case multiplication on  single coefficient in each section is 
replaced on shift and adding (or subtraction) operations. It is important to minimize the total number of the ad-
ders replacing multipliers [1-5]. Two stage algorithm of variation of initial parameters (VIP) was applied for this 
purpose in [4] and its efficiency has been confirmed on particular examples. In this paper the design problem of 
multiplierless half-band digital filters is adjusted and  more simple for programming VIP algorithm which leads 
to the same results as the algorithm in [4] is offered to use.     

2. Zolotarev-Cauer half-band filters. The half-band digital filters based on parallel connection of two 
allpass networks  is described by a transfer function:    
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Here N is the odd filter order, the sign plus and minus corresponds of  the low-  and high-pass filter respectively.   

For  Zolotarev-Cauer half-band filters at fixed N the coefficients in (1) are some functions of the only 
initial parameter :   
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where sf is the stopband edge normalized relation to a sampling frequency. 
The half-band 3-rd order filter is described by the only coefficient 1β . Using the explicit equations for 

(2) from [6], it can be shown that at the change sf  in an interval 5.0f25.0 s <<  (for low-pass filters) the 
value 1β  monotonously changes in the range 1> 1β > 3/1 .  Any value of the coefficient, including a quantized 
value, from this range corresponds to a Zolotarev-Cauer half-band filter. It is interesting that 1β =1/3 determines 
the Butterworth 3-rd order half-band filter and therefore there are no such filters with a quantized coefficient (it 
is known that coefficients of Butterworth half-band filters depends on N only). 

3. Problem of multiplierless half-band filter design. For a half-band filter design with the transfer 
function  (1) it is sufficiently to control either the stopband  or passband. If  the coefficients in (1) are deter-
mined as in (2) then  multiplierless half-band filter design problem by а VIP algorithm can be formulated as    

sfsm min)f( →Σ ,  min0s0 a)f(a~ ≥ , Sfs ∈  

where 0a~  is the minimum attenuation of the magnitude response in the nominal stopband; the symbol ~ means 

adequacy to the quantized coefficients in (2); min0a is the given tolerable attenuation; mΣ - the total number of 

adders, replacing multipliers; S is the space of possible values sf which includes the given nominal value snf . 



As a result of the design we shall obtain quantized coefficients which will not correspond to a  Zolo-
tarev-Cauer filter except  N=3 and 1> 1β > 3/1 . Notice, the multiplierless Zolotarev-Cauer half-band filter de-
sign at N=3 can be regarded as a trivial problem which can be solved without the use of (2) by direct substitu-
tion of  "good" values 1β  in (1) with the subsequent analysis of 0a~ .  
 4. Design algorithm. A decision of the formulated problem can be found by the two step VIP algorithm 
from [4]. The first stage is a definition of starting points by a branch and bound method,  the second stage is a 
local variation of the parameter sf . In the algorithm a transcendental equation is repeatedly solved. Simplified 
VIP algorithm, in essence similar described in [7], is free from this procedure. It consists in the following: the 
parameter sf changes in the space S for a set of values of the coefficient quantization step maxqq = , 2/q max ,… 
until for  some 0qq =  and 2/q0  all tolerable solutions with min00 aa~ ≥ will be found. Further a variant with 

the minimal number mΣ  should be chosen.  
 Notice that in S there are the finite number of subspaces and the own coefficient vector corresponds to 
each of these subspaces [7]. In the algorithm all subspaces are found and for each subspace the evaluation of a 
solution on tolerability is carried out only once. In a heuristic algorithm [2] these details are not described.  
 The results of a half-band filter design from [2] and [4] can be reproduced by the simplified VIP algo-
rithm. Further other filter design example is discussed and a catalogue of Zolotarev-Cauer 3-rd order half-band 
filters which has been obtained by solving (2) for a set of quantized coefficients is presented.   
 5. Example. Half-band filter specifications: дБ47a min0 = , snf =0.27, N=9. 
Authors [5] have found by a variation of coefficients (VC) the following solution: 
 

mΣ =7, 63
1 22 −− +=β , 941

2 222 −−− −−=β , )21)(21( 42
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−− −−=β , 53
4 221 −− +−=β . 

 
It is possible to check up that these coefficients corresponds to 0a~ =45 dB instead of 47 dB.  
 The described above VIP  algorithm leads to a set of solutions with ≥0a~  45 dB and two of them are  
 
var.1: sf =0.271415 , mΣ =8, 0a~ =47 dB, 

73
1 22 −− +=β , 7532
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var.2: sf = 0.265030, mΣ =7, 0a~ =45 dB, 

53
1 22 −− +=β , 951

2 222 −−− +−=β , )21)(22( 621
3

−−− −+=β , 64
4 221 −− −−=β . 

 
Var.1 satisfies to the requirement on 0a~  but concedes to the solution [5] in mΣ  on one adder. Var.2  is equiva-
lent to this solution and has other coefficients.  
  We use the coefficients of var.1 as initial in VC algorithm. The algorithm gives the solution:   
 
var.3: mΣ =6, 0a~ =46 dB, 
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In relation to var.1 two adders are saved but 0a~  is reduced on 1 dB, and  in relation to var.2 and the solution [5] 
one adder is saved and 0a~  is improved on 1 dB. 
 A structure of each four allpas sections in [5] contains 3 adders. Two adders is required for low- and 
high-pass outputs. Therefore the total number of adders in the filter structure Σ= mΣ +3×4+2=21. If the direct 
form with two adders is used for realization of the allpass sections than we shall obtain Σ=16 for var.3.   



 6. Catalog of Zolotarev-Cauer 3-rd order half-band filters. Coefficients and parameters of Zolo-
tarev-Cauer 3-rd order half-band digital filters are presented in the table. Here  a~∆   is  the passband   ripple and     
                      Table 

Filter 1 2 3 4 5 6 7 8 
1β  12− + 22−  12− + 32− + 

42−  

12− + 32− 12− + 42− 12−  12− - 52−  12− - 42−  (1- 42− ) ×  
( 12− - 42− )

sns ff =  0.263822 0.271403 0.281561 0.295354 0.314677 0.327493 0.343496 0.361343 

0a~ , dB 11.1 13.2 15.5 18.4 22.3 24.8 28.0 31.8 

a~∆ , dB 0.35 0.22 0.12 0.063 0.026 0.014 0.0068 0.0029 
τ∆~  5.0 3.4 2.3 1.6 1.0 0.77 0.56 0.39 

       
   

continuation of the table 
9 10 11 12 13 14 15 

(1+ 42− ) ×   
( 22− + 32− ) 

(1- 32− )×  
( 12− - 42− )

22− + 32−  (1- 52− )×   
( 12− - 32− )

22− + 32− - 62− (1+ 32− )×  
( 22− + 42− ) 

22− + 42− + 52−

0.370575 0.385009 0.393448 0.408312 0.414071 0.427368 0.444521 
33.9 37.3 39.5 43.7 45.5 50.1 57.3 

0.0018 0.0008 0.0005 0.00018 0.0001 0.00004 0.00001 
0.325 0.24 0.20 0.14 0.12 0.084 0.048 

 
τ∆~ is the group delay normalized with respect to a sampling period. The number of the adding in these coeffi-

cients does not exceed two. Only for the filter-5 the multiplication on the coefficient is implemented without 
adders.  

7. Conclusions. А simplified VIP algorithm may be applied for the design of  multiplierless half-band 
digital filters based on parallel connection of two cascaded allpass networks. The 9-th order filter design with 
the minimal total number of  adders replacing multipliers is discussed. It is shown that for these filter the addi-
tional reduction of the number of adders can be achieved by association the VIP algorithm and a variation of 
coefficients. A catalogue 15 Zolotarev-Cauer 3-rd order half-band filters which are economic for realization on 
VLSI is presented. 
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