DSPA, 2009, March 25-27, V.1, p.102-103 TWO EXAMPLES OF MULTIPLIERLESS PERFECT RECONSTRUCTION LATTICE FILTER BANK DESIGN

Mingazin A.

RADIS Ltd, Russia, Moscow, Zelenograd, 124460, POB 20.

Tel./fax 499-735-35-13, e-mail: alexmin@orc.ru

This paper is devoted to solving of the task of multiplierless two-channel perfect reconstruction lattice filter banks [1-4]. A modified algorithm combining a variation of initial parameters (VIP) and a variation of coefficients (VC) are used. Two examples show that the refuse of a simplified selection of a spectral factor code (C) leads to substantial improvement of results.

Example 1. Filter bank requirements: the nominal edges are $f_{1n} = 0.18$, $f_{2n} = 0.32$, and the sampling frequency equal 1, the order of each filter is 2N-1=27, the mantissa of binary coefficients is $M \le 10$, the number of non-zero bits in the coefficients is $m \le 2$. The task 1: the minimum stopband attenuation is $\tilde{a}_0 \rightarrow max$. The task 2: the total number of adders in the multiplierless filter is $\Sigma \rightarrow min$, $\tilde{a}_0 \ge 45$ dB.

A value \tilde{a}_0 =45.45 dB (more precisely 45.37 dB [4]) at M=10 and m=2 (Σ =56) is reached in [1]. Improved solutions for simplified selected C=33 are obtained in [4] by VIP+VC algorithm. In [1] an initial filter with continuous coefficients corresponds to C=0 and the designed multiplierless filter corresponds to C=32. Therefore it is interesting to find solutions by VIP+VC modified algorithm for C=32. The values \tilde{a}_0 =48.59 dB, Σ =54, M=8 and \tilde{a}_0 =45.49 dB, Σ =50, M=8 are obtained for this value C. Both solutions improve the result [1].

Designing by VIP+VC modified algorithm for C=0,1,...,127 and C=16383-0,1,...,127= $\underline{0,1}$, ...,<u>127</u> leads to many solutions exceeding results [1,4]. Two best of them are C=<u>102</u>, \tilde{a}_0 =53.35 dB, Σ =54, M=9 and C=<u>25</u>, \tilde{a}_0 =45.39 dB, Σ =46, M=4. For the second solution the found coefficients α_0 ,..., α_{13} (on fig. 1b in [1,2]) are 1-2⁻⁴, 2⁻³, 2, -1-2⁻¹, -2-2⁻³, -2⁻⁴, -2⁻¹+2⁻⁴, -1-2⁻⁴, -2⁻²-2⁻³, -2²+2⁻¹, 2⁻⁴, 2+2⁻², -2⁻⁴, 2+2⁻³. Interestingly, that this second solution is possible to reach by using the only VIP algorithm.

Example 2. The requirements: the nominal edges are some, $\tilde{a}_0 \ge 45.45$ dB, 2N-1=21, M=9, m ≤ 3 and $\Sigma \rightarrow \min[2]$. A solution with $\Sigma = 56$ and $\tilde{a}_0 = 45.78$ dB (more precisely 45.19 dB [3]) is achieved in [2]. VIP algorithm [3] leads to $\Sigma = 56$ and $\tilde{a}_0 = 45.01$ dB. Here we use VIP+VC modified algorithm for a set of C. For solutions [2,3] all zero appropriated to a passband are inside the unit circle. In this case for the given filter order the code C=0 or C=1984-k64, k=0,1,..., 31. We shall be limited C=0 and C=1984. In the first case solution with $\Sigma = 56$, $\tilde{a}_0 = 45.16$ dB and in the second case solution with $\Sigma = 56$, $\tilde{a}_0 = 45.66$ dB are obtained. It is interesting that the coefficients $\alpha_0, ..., \alpha_{10}$ for C=1984 distinguish from that were founded in [2] by the only coefficient. We have $\alpha_0 = -2^2 + 2^{-6}$, and in [2] $\alpha_0 = -2^2 + 2^{-5}$. Besides our value α_0 is included into a range of exhaustive search [2]. Apparently the misprint is accepted in [2].

Designing for C=1,2, ...,32 lead to very big number of solutions with $\tilde{a}_0 \ge 45.45$ dB and $\Sigma \le 56$, two best of them are C=2, $\tilde{a}_0 = 46.19$ dB, $\Sigma = 48$ and C=12, $\tilde{a}_0 = 45.64$ dB, $\Sigma = 46$. For the second solution $\alpha_0,...,\alpha_{10}$ are 2^{-3} , $2^{-1} - 2^{-9}$, $-2^3 + 2 + 2^{-3}$, $-1 + 2^{-2} + 2^{-5}$, 2^{-4} , $-2^{-2} - 2^{-5} - 2^{-7}$, $-2^{-1} + 2^{-6}$, $2^2 - 2^{-1}$, $1 + 2^{-3} + 2^{-6}$, -2^{-1} , $-2^{-2} - 2^{-3}$. In comparison to the solution at C= 1984 the number of adders is reduced from 56 to 46.

References

 Lim Y.C., Yu Y. J. A width-recursive depth-first tree search approach for the design of discrete coefficient perfect reconstruction lattice filter bank. IEEE Trans. on CAS: II. 2003. Vol. 50. June. P. 257-266.
Yli-Kaakinen J., Saramaki T., Bregovic R. An algorithm for the design of multiplierless two-channel perfect reconstruction orthogonal lattice filter banks. ISCCSP. 2004. Mar. P. 415-418.

3. Mingazin A. Design of multiplierless perfect reconstruction lattice filter banks. Sowremennaya elektronika. 2007. Mar. P. 50-55.

4. Mingazin A. Improved design of multiplierless two-channel perfect reconstruction lattice filter banks. Sowremennaya elektronika. 2008. Mar. P.26-31.